
Recent advances in Graph Data Management

ISWC 2024

Domagoj Vrgoč

Outline

This is about Graph Databases

• Part 1: Modelling, data and queries

• Part 2: Worst-case optimal join algorithms

• Part 3: Path queries

• Part 4: MillenniumDB

¿How to implement a Graph Database?

Part 1:
What are Graph Databases?

...

An example of a
 “knowledge graph”?

Wikidata: Wikipedia but with graph data

What kinds of entities?

What kinds of entities?

What kinds of entities?

What kinds of entities?

What kinds of entities?

Where is Wikidata used?

Where is Wikidata used?

How is this a graph?

Knowledge Graph Management:
 Graph Databases

Popular graph databases

Popular graph databases https://db-engines.com/

https://db-engines.com/

Popular graph databases https://db-engines.com/

https://db-engines.com/

Graph Databases:
 Data Models

Directed edge-labelled graph (RDF)

RDF

Property graphs

Property
Graphs

Property graphs vs RDF

Property
Graphs

RDF

Property graphs vs RDF

Property
Graphs

RDF

Property graphs vs RDF

Property
Graphs

RDF

Property graphs vs RDF

Property
Graphs

RDF

Property graphs vs RDF

Property
Graphs

RDF

See [Reification] for details

Property graphs vs RDF: the ‘‘node’’

Property
Graphs

RDF
Entity (IRI)

Internal ID

Property graphs vs RDF: the ‘‘node’’

Property
Graphs

RDF
Entity (IRI)

String literal

Wikidata: Wikipedia but with graph data

Wikidata statements

Can you represent this in RDF?

RDF

See [Reification] for details

Property graphs

Property
Graphs

Are Property graphs enough?

Property
Graphs Literal!

Literal!

Literal!

Are Property graphs enough?

Property
Graphs Clickable!

Why?
Political party
of the person
replacing her!

Solution: domain graphs

Domain graphs in a nutshell: make everything clickable

See [Multi22] for details

Solution: domain graphs

Domain graphs in a nutshell: make everything clickable

See [Multi22] for details

Solution: domain graphs

Domain graphs in a nutshell: make everything clickable

See [Multi22] for details

Entity!

Solution: domain graphs

Domain graphs in a nutshell: make everything clickable

See [Multi22] for details

Entity!

Entity!

Solution: domain graphs

Domain graphs in a nutshell: make everything clickable

See [Multi22] for details

Entity!

Entity!

Entity!

Solution: domain graphs

Domain graphs in a nutshell: make everything clickable

See [Multi22] for details

Implementing Domain Graphs

Perhaps this is enough: one label per edge?

See [OneGraph,MDB] for details

Honourable mention: RDF*

See [RDF*] for details

Quotable triples

Honourable mention: RDF*

See [RDF*] for details

Quotable triples

Honourable mention: RDF*

See [RDF*] for details

Quotable triples

Honourable mention: RDF*

See [RDF*] for details

Issue: not covering all use cases

Honourable mention: RDF*

See [RDF*] for details

Benefits: neat syntax, being standardized

:Michelle Bachelet :position held :President of Chile .

<<:Michelle Bachelet :position held :President of Chile>> :start date "2006-03-11"^^xsd:date .

<<:Michelle Bachelet :position held :President of Chile>> :end date "2010-03-11"^^xsd:date .

Graph databases:
 Why not use relational databases?

Why use graphs? (flexibility)

RDF

Why use graphs? (flexibility)

RDF

Why use graphs? (flexibility)

RDF

Why use graphs? (flexibility)

RDF

Why use graphs? (flexibility)

Property
Graphs

Why use graphs? (flexibility)

Property
Graphs

Why use graphs? (flexibility)

Property
Graphs

Why use graphs? (flexibility)

Property
Graphs

The floor is yours!

Anything you would like to add?

Querying graph databases

Graph query languages

• RDF/edge-labelled graphs:
– SPARQL W3C standard [SPARQL]

– Bunch of engines (Blazegraph, Jena, Virtuoso, MillenniumDB,...)

• Property graphs:
– GQL fresh ISO standard (very expressive) [GQL22, GQLDigest]

• Heavily influenced by Neo4J’s Cypher [Cypher]

– SQL/PGQ

Graph query languages

Core features of all graph query languages

• Graph patterns:
– Find a smaller graph-like pattern in a larger graph

• Path queries:
– Find how the graph nodes are connected via paths

• Navigational graph patterns:
– Put path queries into graph patterns

• Complex graph queries:
– Filters, aggregation, union, projection, selection, ...

See [AABHRV17] for details

Graph Patterns

Basic graph patterns

Academic siblings whose supervisor won the Turing Award

Idea:
Match this into the main

graph (preserve constants)

RDF

Basic graph patterns

Academic siblings whose supervisor won the Turing Award

RDF

Semantics: Homomorphism

Basic graph patterns

Academic siblings whose supervisor won the Turing Award

RDF

Semantics: Isomorphism

Basic graph patterns

Support in RDF databases

RDF

SPARQL:

• Known as triple patterns [PAG09]

• Basically joins over the Edge(src,label,tgt) table

Let’s see this on Wikidata/SPARQL

https://wikidata.imfd.cl
Query1 Query2 Query3

https://wikidata.imfd.cl/
https://wikidata.imfd.cl/?q=PREFIX%20wdt%3A%20%3Chttp%3A%2F%2Fwww.wikidata.org%2Fprop%2Fdirect%2F%3E%0APREFIX%20wd%3A%20%3Chttp%3A%2F%2Fwww.wikidata.org%2Fentity%2F%3E%0A%0A%23%20People%20who%20studied%20at%20Stanford%20and%20won%20a%20Turing%20Award%0ASELECT%20%3Fres1%20%0AWHERE%7b%0A%20%20%3Fres1%20wdt%3AP69%20wd%3AQ41506.%0A%20%20%3Fres1%20wdt%3AP166%20wd%3AQ185667.%0A%7d%0A
https://wikidata.imfd.cl/?q=PREFIX%20wdt%3A%20%3chttp%3A%2F%2Fwww.wikidata.org%2Fprop%2Fdirect%2F%3e%0APREFIX%20wd%3A%20%3chttp%3A%2F%2Fwww.wikidata.org%2Fentity%2F%3e%0APREFIX%20rdfs%3A%20%3chttp%3A%2F%2Fwww.w3.org%2F2000%2F01%2Frdf-schema%23%3e%0A%0A%23%20Students%20of%20Manuel%20Blum%20who%20won%20a%20Turing%20Award%0ASELECT%20*%0AWHERE%7b%0A%20%20%3Fres1%20wdt%3AP166%20wd%3AQ185667.%0A%20%20%3Fres1%20wdt%3AP184%20wd%3AQ92626.%0A%20%20%3Fres1%20rdfs%3Alabel%20%3Flabel.%0A%20%20FILTER%20(langMatches(%20lang(%3Flabel)%2C%20%22ES%22%20)%20)%0A%7d%0A
https://wikidata.imfd.cl/?q=PREFIX%20wdt%3A%20%3chttp%3A%2F%2Fwww.wikidata.org%2Fprop%2Fdirect%2F%3e%0APREFIX%20wd%3A%20%3chttp%3A%2F%2Fwww.wikidata.org%2Fentity%2F%3e%0A%0A%23Students%20of%20Robert%20Floyd%20that%20studied%20at%20the%20same%20university%20and%20both%20won%20the%20Turing%20Award%0ASELECT%20%3Fres1%20%3Fres2%20%3Funiversity%0AWHERE%7b%0A%20%20%3Fres1%20wdt%3AP69%20%3Funiversity.%0A%20%20%3Fres2%20wdt%3AP69%20%3Funiversity.%0A%20%20%3Fres1%20wdt%3AP184%20wd%3AQ92641.%0A%20%20%3Fres2%20wdt%3AP184%20wd%3AQ92641.%0A%20%20%3Fres1%20wdt%3AP166%20wd%3AQ185667.%0A%20%20%3Fres2%20wdt%3AP166%20wd%3AQ185667.%0A%20%20FILTER%20(%3Fres1%20!%3D%20%3Fres2)%0A%7d%0A

Basic graph patterns

Papers written by Robert Floyd

Property

Graphs

Basic graph patterns

Co-authors of Robert Floyd

Property

Graphs

Basic graph patterns

Co-authors of Robert Floyd

Property

Graphs

Recall:
Match the pattern into the

graph and nothing else!

Basic graph patterns

GQL:

• Similar as in SPARQL [GQLDigest, GQL]

• But now we have more things to consider
– Labels, attribute values, etc.

Property

Graphs

Support in property graph databases

Let’s see this on BibKG/GQL

https://bibkg.imfd.cl

https://bibkg.imfd.cl/#/query

Path Queries

Regular path queries

A generic RPQ

RDF

Idea:

• find pairs of nodes
• connected by a path
• whose edge labels are a word matching regex

Regular path queries

People educated at a university in the USA

RDF

Idea:

• traverse an educated at-labelled edge
• then any number of located in-labelled edges
• until you reach the node "United States of America"

Regular path queries

People educated at a university in the USA

RDF

Regular path queries

People educated at a university in the USA

RDF

Regular path queries

A generic RPQ

RDF

SPARQL:

• Known as property paths [KRRV15]
• Based on 2-way regular path queries (RPQs) [2RPQs, MW95]
• Essentially a reachability check – no path is returned

Let’s see this on Wikidata/SPARQL

https://wikidata.imfd.cl
Query

https://wikidata.imfd.cl/
https://wikidata.imfd.cl/?q=PREFIX%20wdt%3A%20%3chttp%3A%2F%2Fwww.wikidata.org%2Fprop%2Fdirect%2F%3e%0APREFIX%20wd%3A%20%3chttp%3A%2F%2Fwww.wikidata.org%2Fentity%2F%3e%0A%0A%23Academic%20descendants%20of%20Robert%20W.%20Floyd%0ASELECT%20*%0AWHERE%7b%0A%20%3Fdescendant%20wdt%3AP184%2B%20wd%3AQ92641.%0A%7d%0ALIMIT%20100

Regular path queries – but extended

People with a finite Floyd number

Property

Graphs

Regular path queries – but extended

People with a finite Floyd number

Property

Graphs

Regular path queries – but extended

People with a finite Floyd number

Property

Graphs

Regular path queries – but extended

People with a finite Floyd number

Property

Graphs

Regular path queries – but extended

People with a finite Floyd number – and a path to them

Property

Graphs

Regular path queries – but extended

People with a finite Floyd number – and a path to them

Property

Graphs

Regular path queries – but extended

People with a finite Floyd number – and a path to them

Property

Graphs

Which paths?
More on this soon!

Regular path queries – but extended

Path queries on property graphs/GQL

Property

Graphs

GQL:

• Can return paths [GQL, FMRV23]

• Supports powerfull data comparisons over paths [LMV16]

• Many features not well understood yet [GQLDigest]

Let’s see this on BibKG/GQL

https://bibkg.imfd.cl

https://bibkg.imfd.cl/#/query

Navigational graph patterns

Navigational graph patterns

Basic Graph Patterns + Regular Path Queries

RDF

Conjunctive regular path queries

Academic descendants of Robert Floyd who won the same award

RDF

Conjunctive regular path queries

Academic descendants of Robert Floyd who won the same award

RDF

Conjunctive regular path queries

Academic descendants of Robert Floyd who won the same award

RDF

Conjunctive regular path queries

Conjunctive regular path queries (CRPQs)

RDF

SPARQL:

• Allows mixing property paths into basic graph patterns
• Known as Conjunctive regular path queries (CRPQs) [CM90]
• Essentially joins with an arbitrary length reachability checks

Let’s see this on Wikidata/SPARQL

Query1 Query2

https://wikidata.imfd.cl

https://wikidata.imfd.cl/?q=PREFIX%20wdt%3A%20%3chttp%3A%2F%2Fwww.wikidata.org%2Fprop%2Fdirect%2F%3e%0APREFIX%20wd%3A%20%3chttp%3A%2F%2Fwww.wikidata.org%2Fentity%2F%3e%0A%0A%23Descendants%20of%20Robert%20Floyd%20that%20won%20the%20Turing%20award%0ASELECT%20*%0AWHERE%7b%0A%20%20%3Fperson%20wdt%3AP184%2B%20wd%3AQ92641.%0A%20%20%3Fperson%20wdt%3AP166%20wd%3AQ185667.%0A%7d
https://wikidata.imfd.cl/?q=PREFIX%20wdt%3A%20%3chttp%3A%2F%2Fwww.wikidata.org%2Fprop%2Fdirect%2F%3e%0APREFIX%20wd%3A%20%3chttp%3A%2F%2Fwww.wikidata.org%2Fentity%2F%3e%0A%0A%23Descendants%20of%20Robert%20Floyd%20that%20won%20the%20same%20award%20as%20him%0ASELECT%20*%0AWHERE%7b%0A%20%20%3Fperson%20wdt%3AP184%2B%20wd%3AQ92641.%0A%20%20%3Fperson%20wdt%3AP166%20%3Faward.%0A%20%20wd%3AQ92641%20wdt%3AP166%20%3Faward.%0A%7d
https://wikidata.imfd.cl/

CRPQs – but extended

People with a Floyd-number who published a paper about DB

Property

Graphs

CRPQs – but extended

People with a Floyd-number who published a paper about DB

Property

Graphs

Let’s see this on BibKG/GQL

https://bibkg.imfd.cl

https://bibkg.imfd.cl/#/query

Graph Databases:
 Complex Graph Patterns

At the core of millions of databases
we take for granted every day

Relational Algebra

Complex graph patterns

Graph Patterns + Relational Algebra
+ Regular Path Queries

Academic siblings whose supervisor won the Turing Award

Complex graph patterns

Academic siblings whose supervisor won the Turing Award

Complex graph patterns

Complex graph patterns

People who were born or studied in the US?

Complex graph patterns

People who were born or studied in the US?

Complex graph patterns

People who were born or studied in the US?

Complex graph patterns

• Graph patterns

• Path queries

• Navigational graph patterns

• Relational operations

• Aggregation

• ...

Graph languages summary

• RDF/edge-labelled graphs:
– SPARQL W3C standard

– Bunch of engines (Blazegraph, Jena, Virtuoso, MillenniumDB,...)

• Property graphs:
– GQL ISO standard is still piping hot

– Very expressive, still being implemented and studied

The floor is yours!

What features are crucial in a graph query language?

Part 1 Conclusions

• Graph databases a hot topic!

• Two models:
– Directed edge-labelled graphs/RDF

– Property graphs

• Query features:
– Basic graph patterns

– Path queries

– Relational features

• Need for efficient methods for evaluating queries

Let's learn some efficient methods!

Part 4 spoiler: MillenniumDB
(also, there will be no part 4)

IMFD Chile

• Millennium Science Initiative Chile
– Interdisciplinary research institue (CS/Social Sciences)

– Focus on big scale projects

– One of those: "build a graph database system"

• Why us?
– DB expertise: M. Arenas, J. Reutter, C. Riveros, J. Pérez

– Semantic Web crowd: A. Hogan, C. Gutierrez, R. Angles

– Algorithms/compression: G. Navarro, D. Arroyuelo

MillenniumDB

What for?

• Open source:
– Build a sandbox for testing research algorithms
– Test if our research claims check out
– Support Wikidata
– Also, this way we can check if theory is worth anything!

• People involved:
– Carlos Rojas (chief engineer)
– Vicente Calisto, Gustavo Toro, Benjamín Farías
– T. Heuer, K. Bosonney, J. Romero, ...
– Myself (chief complainer)

2019 ...

Key highlights of MillenniumDB

• RDF/SPARQL & Property Graphs/GQL
– Inside of the same engine

– SPARQL path queries extended with GQL-inspired features

• Classical database pipeline
– Quasi-relational

• Focus on support for public query endpoints
– MVCC-based concurrency control

– Readers always go through

– Cental update mechanism

Is theory useful? (no spoiler version)

• Worst-case optimal join processing
– Graph data usually requires queries where this is useful

– So will it pan out?

– Elephant in the room: indices, updates, concurrency

• Path queries
– An old idea from DB theory that everyone claims they use

• Enumeration algorithms
– Recent theoretical concept of splitting query evaluation into two

– Preprocessing with a single pass over the data

– Enumerate the results one by one (volcano-style)

Architecture of MillenniumDB

Triples(subject, predicate, object)

Connections(src, label, tgt, eId)
Labels(objectId, label)
Properties(objectId, key, value)

RDF

PGs

Try it yourself

https://github.com/MillenniumDB/MillenniumDB

https://github.com/MillenniumDB/MillenniumDB

Part 2:
Evaluating Graph Patterns

Evaluating BGPs

Students and supervisors who both won the same award

RDF

Evaluating BGPs

Students and supervisors who both won the same award

RDF

SELECT *
WHERE {
 ?supervisor :advisor ?student .
 ?supervisor :received ?award .
 ?student :received ?award .
}

How is this stored?

Students and supervisors who both won the same award

RDF

SELECT *
WHERE {
 ?supervisor :advisor ?student .
 ?supervisor :received ?award .
 ?student :received ?award .
}

Triples(subject, predicate, object)

• Graph stored as a relation

• Graph pattern is a join of this relation

• And usually we do this join many times

Graphs as relations

Graphs as relations

Graphs as relations

Graphs as relations

Graphs as relations

Notation for join queries

Notation for join queries

Notation for join queries

Notation for join queries

• Basically, joins are important

• Graph patterns can be viewed as joins of binary relations

How many results can a join query have?

Over graphs with a fixed budget n = 4 for each edge

• This just means

• Turns out this is a very subtle question!

How many results can a join query have?

Over graphs with a fixed budget n = 4 for each edge

How many results can a join query have?

Over graphs with a fixed budget n = 4 for each edge

How many results can a join query have?

Over graphs with a fixed budget n = 4 for each edge

And now?

Over graphs with a fixed budget n = 4 for each edge

And now?

Over graphs with a fixed budget n = 4 for each edge

And now?

Over graphs with a fixed budget n = 4 for each edge

• In this instance we got 8!

• Interestingly, this is the maximum.

Why?

AGM bound

See [AGM08] for details ???

What would be ideal?

• Best possible algorithm for a query :
– per query result

– So runtime would be on any instance

– This is the holy grail of databases!
• So it probably does not exist

But let us try to see how good this would be
(i.e. let’s see how many results there are)

Estimating the output size

Estimating the output size

Estimating the output size

Estimating the output size

Estimating the output size

Estimating the output size

Estimating the output size

Estimating the output size

Edge cover (for graphs)

Edge cover (for graphs) Graph G
Nodes: ?x, ?y, ?z

Edges: R, S, T

Edge cover (for graphs) Graph G
Nodes: ?x, ?y, ?z

Edges: R, S, T

Edge cover (for graphs)

Edge cover (for graphs)

Edge cover (another perspective)

Edge cover (another perspective)

Edge cover (we can do one better)

integers

Fractional edge cover

Fractional edge cover

Fractional edge cover

Intuitively: the fraction allows only some tuples

of a relation to participate in the result

AGM bound – upper bound

See [AGM08] for details

Is the AGM bound tight?

Is the AGM bound tight?

Is the AGM bound tight?

Is the AGM bound tight?

Is the AGM bound tight?

Is the AGM bound tight?

Is the AGM bound tight?

We can find the best fractional edge cover

over all such instances!

Is the AGM bound tight?

AGM bound – lower bound

See [AGM08] for details

AGM bound – recap

See [AGM08] for details

For our motivating query

Hyperedge cover (general AGM bound)

Hyperedge cover (for relations)

Hyperedge cover (for relations)

Hyperedge cover (for relations)

Hyperedge cover (for relations)

Worst-case optimal algorithms

• Best possible algorithm for a query :
– per query results

– So runtime would be on any instance

– This is the holy grail of databases!
• So it probably does not exist

• Something more realistic:
– Join query:

– I give you any instance where

– The algorithm runs the best it can on any such instance

What does the ‘’best it can’’ mean?

Worst-case optimal algorithms

See [AGM08] for details

Worst-case optimal algorithms

See [AGM08] for details

You cannot be worse than this!

Worst-case optimal algorithms

See [AGM08] for details

You cannot be worse than this!

It can actually be this bad!

Worst-case optimal algorithms

See [Ngo13] for details

Worst-case optimal algorithms

See [Ngo13] for details

Up to a logarithmic factor!

Worst-case optimal algorithms

See [Ngo13] for details

Worst-case optimal algorithms

See [Ngo13] for details

Are pairwise joins wco?

Maybe we can find a good ordering?

(AGM bound)

Are pairwise joins wco?

Observations:

Are pairwise joins wco?

Observations:

Are pairwise joins wco?

Observations:

Are pairwise joins wco?

Observations:

Are pairwise joins wco?

Observations:

Are pairwise joins wco?

Conclusion:

Pairwise joins are not worst-case optimal!

Example of a WCO algorithm:
 Leapfrog Triejoin

Unary joins

Relations stored in increasing order

Unary joins

Evaluate aaaaaaaaaaaaaaaaa

Unary joins

Evaluate aaaaaaaaaaaaaaaaa

Unary joins

Evaluate aaaaaaaaaaaaaaaaa

Unary joins

Evaluate aaaaaaaaaaaaaaaaa

Unary joins

Evaluate aaaaaaaaaaaaaaaaa

Unary joins

Evaluate aaaaaaaaaaaaaaaaa

Unary joins

Evaluate aaaaaaaaaaaaaaaaa

Unary joins

Evaluate aaaaaaaaaaaaaaaaa

Unary joins

Evaluate aaaaaaaaaaaaaaaaa

Unary joins

Evaluate aaaaaaaaaaaaaaaaa

Unary joins

Evaluate aaaaaaaaaaaaaaaaa

Unary joins

Evaluate aaaaaaaaaaaaaaaaa

Unary joins

Evaluate aaaaaaaaaaaaaaaaa

Unary joins

Evaluate aaaaaaaaaaaaaaaaa

Unary joins

Relations stored in increasing order

Unary joins

Runtime

Runtime

Cycle through the iters

Max number of seeks

Cost of a seek

Runtime

How many steps does the algorithm take to detect there are 0 results?

Runtime

How many steps does the algorithm take to detect there are 0 results?

Leapfrog Triejoin
(now with relations)

Evaluation of a join query

Different evaluation philosophy

Evaluation of a join query

Different evaluation philosophy

Leapfrog Triejoin

Global Variable Ordering (GAO)

Leapfrog Triejoin

Global Variable Ordering (GAO)

Leapfrog Triejoin

Global Variable Ordering (GAO)

Leapfrog Triejoin

Global Variable Ordering (GAO)

Leapfrog Triejoin

Partially instantiating the join w.r.t. GAO

Leapfrog Triejoin

Partially instantiating the join w.r.t. GAO

Leapfrog Triejoin

Partially instantiating the join w.r.t. GAO

Leapfrog Triejoin

Partially instantiating the join w.r.t. GAO

Leapfrog Triejoin

Partially instantiating the join w.r.t. GAO

Partially instantiating the query w.r.t. GAO

Leapfrog Triejoin

Partially instantiating the join w.r.t. GAO

Partially instantiating the query w.r.t. GAO

Leapfrog Triejoin

Partially instantiating the join w.r.t. GAO

Partially instantiating the query w.r.t. GAO

Leapfrog Triejoin

Leapfrog Triejoin

Leapfrog Triejoin

A bunch of nested fors is optimal?

Leapfrog Triejoin

A bunch of nested fors is optimal?

AGM bound is tight:
There is a case where you

saturate all these intersections!

Leapfrog Triejoin

A bunch of nested fors is optimal?

AGM bound is tight:
There is a case where you

saturate all these intersections!

It’s worst-case optimal!

Where are the Tries?

Where are the Tries?

Relation as a Trie

(Tikz image of the Trie by Cristian Riveros, example from [Leapfrog])

Relation as a Trie

(Tikz image of the Trie by Cristian Riveros, example from [Leapfrog])

Relation as a Trie

(Tikz image of the Trie by Cristian Riveros, example from [Leapfrog])

Relations are usually Tries

Most common way to store a relation?

B+ tree

Supports search of a prefix of T[x,y,z] in O(log|T|)
Therefore seek can be done in the neccessary time

Leapfrog in a triangle

Leapfrog in a triangle

Leapfrog in a triangle

Leapfrog in a triangle

Leapfrog in a triangle
Unary leapfrog

Leapfrog in a triangle

Leapfrog in a triangle

Leapfrog in a triangle

Leapfrog in a triangle

Leapfrog in a triangle

Leapfrog in a triangle

Leapfrog in a triangle

Leapfrog in a triangle

Leapfrog in a triangle

Leapfrog in a triangle

Leapfrog in a triangle

Leapfrog in a triangle

Leapfrog in a triangle

Leapfrog in a triangle

Leapfrog in a triangle

Leapfrog in a triangle

Leapfrog in a triangle

Leapfrog in a triangle

Leapfrog in a triangle

Leapfrog in a triangle

Leapfrog in a triangle

Leapfrog in a triangle

Leapfrog in a triangle

Leapfrog in a triangle

Leapfrog in a triangle

Leapfrog in a triangle

Leapfrog in a triangle

Leapfrog in a triangle

Leapfrog in a triangle

Done!

Relations are usually Tries

Most common way to store a relation?

B+ tree

So we can do Leapfrog on relations
(Is it really this easy?)

Leapfrog in a triangle

Leapfrog in a triangle

Leapfrog in a triangle

Leapfrog in a triangle

Cannot do efficient intersection!

(We need a Trie starting with ?z)

Leapfrog in a triangle

• To support any GAO:
– We need all the permutations of the attributes

– Table with n attributes = n! permutations

How many permutations?

• This can get expensive
– Need many permutations

– Many many many permutations

– Basically all column orderings of your tables

– 3! = 6 for RDF

– 4! + 2! + 3! = too many for PGs

Triples(subject, predicate, object)

Connections(src, label, tgt, eId)
Labels(objectId, label)
Properties(objectId, key, value)

RDF

PGs

Leapfrog is ‘’sensitive’’

Leapfrog is ‘’sensitive’’

Leapfrog is ‘’sensitive’’

Leapfrog is ‘’sensitive’’

Leapfrog is ‘’sensitive’’

Leapfrog is ‘’sensitive’’

Leapfrog is ‘’sensitive’’

Leapfrog is ‘’sensitive’’

Leapfrog is ‘’sensitive’’

Leapfrog is ‘’sensitive’’

Leapfrog is ‘’sensitive’’

Leapfrog is ‘’sensitive’’

Optimal!

Leapfrog is ‘’sensitive’’

Hmm... are you not
supposed to be

optimal?

Leapfrog is ‘’sensitive’’

Hmm... are you not
supposed to be

optimal?

I’m optimal in the worst case!
(and this is not the worst case)

Worst-case optimal joins wrapup

See [MDB] for details

• Storage can be expensive
– 1.8TB for full Wikidata (4 permutations, B+ trees)

– Simple compression of B+trees ~ 900GB

– Compressed representation possible ([Ring, QDags])
• These simulate all the permutations

• Cashing reusable things migh be a bad idea
– For Truthy this worked great

– But in full WikiData it gets to 10GB

• Elephant in the room (no, it’s not Postgres):
– 4 permutations or more need to be updated/versioned

– Still works decent in our setup, but is expensive

Worst-case optimal joins wrapup

See [MDB] for details

• Guarantee to run in the best time in the worst case!
– Basically never more steps then the number of query results

– Outperform classical pairwise join plans on „worst” instances

• Benefits of LeapfrogTriejoin
– Works with B+trees

– Works with MVCC/SI and updates out of the box

Worst-case optimal joins – our take

• RDF:
– SPO, POS, OSP, PSO

• PGs:
– eId is key – stays last, so same orders as RDF

• Allows answering all queries where edge label is known!
– These are usually the ones you would be interested in

– Since search is not done in the void

• For missing permutations:
– Cost-based implementations (Sellinger and Greedy)

Is Leapfrog/WCO any good? (apples to apples)

• Now we can test different algorithms in the same engine
– Important: data on disk buffered to main memory

• Wikidata-based benchmark:
– 1.25B edges

– 300M nodes

– 60000 edge labels

– Queries from the public log (so real ones)

• Only non-bot queries

• Eliminating duplicates (check [WDBENCH])

• 436 complex joins

– Start with a cold engine, data loaded as needed

Is Leapfrog/WCO any good? (apples to apples)

Part 3:
Evaluation of Path Queries

What does a path query return?

All nodes:

• Reachable from start in our graph

• Via a path

• Whose edge label matches a*b

All nodes:

• Reachable from start in our graph

• Via a path

• Whose edge label matches a*b

What if I also want the
path?

What does a path query return?

I also want the path:

• Path #1: start→n1→n3→end

• Path #2: start→n1→n2→n3→end

• Path #3: start→n2→n3→end

What does a path query return?

I also want the path:

• Path #1: start→n1→n3→end

• Path #2: start→n1→n2→n3→end

• Path #3: start→n2→n3→end

Which one?

What does a path query return?

What GQL proposes – you tell me

I also want the path:

• Path #1: start→n1→n3→end

• Path #2: start→n1→n2→n3→end

• Path #3: start→n2→n3→end

What GQL proposes – you tell me

I also want the path:

• Path #1: start→n1→n3→end

• Path #2: start→n1→n2→n3→end

• Path #3: start→n2→n3→end

Why WALK?
Mathematicians call a path a walk

What GQL proposes – you tell me

I also want the path:

• Path #1: start→n1→n3→end

• Path #2: start→n1→n2→n3→end

• Path #3: start→n2→n3→end

For each ?reachable one path
(nondeterministic)

What GQL proposes – you tell me

I also want the path:

• Path #1: start→n1→n3→end

• Path #2: start→n1→n2→n3→end

• Path #3: start→n2→n3→end

For each ?reachable one shortest
path (nondeterministic)

What GQL proposes – you tell me

I also want the path:

• Path #1: start→n1→n3→end

• Path #2: start→n1→n2→n3→end

• Path #3: start→n2→n3→end

For each ?reachable
all shortest paths

This would be too much

This would be too much

For each ?reachable
all paths

This would be too much

A is reachable from start by:

• start→A

• start→A→B→start→A

• start→A→B→start→A→B→start→A

• ...

This would be too much

A is reachable from start by:

• start→A

• start→A→B→start→A

• start→A→B→start→A→B→start→A

• ...

Infinite 
(NOT GOOD FOR YOUR PC)

But this is OK – ALL SIMPLE

No node is repeated
in the path

SIMPLE Path semantics

A is reachable from start by:

• start→A

• start→A→B→start→A

(No infinite looping)

What else?

No edge is repeated
in the path;

(We need property graphs)

What else?

Good trails:

• start→n1

• start→n1→start

• start→n1→start→n2

(No infinite looping – limited by the number of edges)

What else?

Good trails:

• start→n1

• start→n1→start

• start→n1→start→n2

(No infinite looping – limited by the number of edges)

Not TRAIL

ALL OPTIONS

...

ALL OPTIONS

...

Let's solve all these!!!

ALL OPTIONS

...

PROVISO:

Starting node is fixed!

EXAMPLES

EXAMPLES

EXAMPLES

EXAMPLES

• Let us try out a few examples

https://mdb.imfd.cl/path_finder/

https://www.metro.cl/el-viaje/plano-de-red

https://mdb.imfd.cl/path_finder/
https://www.metro.cl/el-viaje/plano-de-red

Intermezzo

A bit of Theory

What should theoreticians study?

• Usual approach: decision problems

What should theoreticians study?

• Does this make sense?

– Join-eval is PTIME, but join + project NP-hard

• Algorithm for finding solutions:

– Try all tuples one at a time

With graph databases this is even worse!

• For any reasonable notion of path query in PTIME

• How do we generate the results?

– Iterate over all possible paths from src to tgt

Is this reasonable?

Sometimes there is an exponential number of those!

Is this reasonable?

Or infinite!

This is actually a semantic issue!

• start→A→end

• start→A→end→start→A→end

• start→A→end→start→A→end→start→A→end

• ...

Enumeration algorithms

What do I do when the output is exponential?

Measure the complexity in terms of |Input| + |Output|

Desiderata:

• Single pass over the data

• Enumerate results one by one without repetitions

• Ideally as soon as they are detected (pipelining)

Enumeration algorithms

What do I do when the output is exponential?

Enumeration algorithms:

• A pre-processing phase that „encodes” the outputs

• Enumeration phase that produces the results

Ideal case – constant delay:

• Single pass over the data O(|G|)

• Produce each output in time O(1)

• So complexity is |Input|+|Output|

Enumeration algorithms

What do I do when the output is exponential?

Can we produce a path in O(1)?

• n1→n2→n3→n4→n5→... →nk

Graph/path case – output-linear delay:

• Single pass over the data O(|G|)

• Produce each output path p in time O(|p|)
– We take O(1) for each element of the path we output

– Basically the time needed to write down the path

• So complexity is |Input|+|Output|

Enumeration algorithms

These have been studied by the PODS community a lot!

Constant delay notion over relational

• Output is a single element per variable

• Usually O(c·|Input|) complexity with large c [Segoufin13]

Output-linear delay needed in general

• Used for RegEx analysis [REmatch]

• And very natural for path outputs

Enumeration algorithms

What do I want for graphs/paths?

Desiderata:

• Single pass over the data O(|q|·|Input|)

– That can be done incrementally

– Finding the first result pauses the algorithm

– So the complexity will usually be proportional to path size

• Enumerate results one by one without repetitions
– As soon as they are detected (pipelining)

– With output-linear delay (even in the pipelined setting)

Let me show you how this was solved in ‘87

Any (shortest) walk

ANY WALK

How?

Here is how

The product construction [MW95]:
– Graph is an automaton
– Regular expression is an automaton
– Do the cross product (on-the-fly to be "efficient")
– Do reachability check from start states to end states

Which algorithms can do this?
– BFS
– DFS
– A*
– IDDFS
– ...

See [MW95,BDRV17,B13,FMRV23] for details

Basic idea

Basic idea

Basic idea

Basic idea

ANY WALK – on-the-fly

Let’s see

Let’s see

Let’s see

Let’s see

Let’s see

Let’s see

Let’s see

Let’s see

Let’s see

Let’s see

Let’s see

Let’s see

Let’s see

Let’s see

Let’s see

Let’s see

Let’s see

Let’s see

Let’s see

Let’s see

Let’s see

Let’s see

Let’s see

Let’s see

Let’s see

Let’s see

Let’s see

Let’s see

Let’s see

Let’s see

ANY WALK

BFS

Does this work in practice?

See [MDB, FMRV23]

• MillenniumDB implements it:
– Algorithm works off the bat with B+trees

– Basically EDGE(src, type, tgt, edgeId) relation

– Classical iterator interface
• Results returned as soon as available

• Algorithm pauses when a result is found

• Try it for yourself:

https://mdb.imfd.cl/path_finder/

https://mdb.imfd.cl/path_finder/

Does this work in practice?

See [MDB, FMRV23]

• Wikidata-based benchmark [WDBench]:
– 1.25B edges (60000 edge labels)/300M nodes

– 659 (non-bot) user defined queries ([MKGGB18])

– (100,000 limit – some queries have >10M results, 1min timeout)

Additional considerations 1

• CSR-based storage gives better performance [FMRV23]
– CSRs can also be built on-the-fly as needed by the query

Additional considerations 1

• CSR-based storage gives better performance [FMRV23]
– CSRs can also be built on-the-fly as needed by the query

Additional considerations 2

• Significant speedups possible when both source and
target are known [XVG19]
– Basically meet-in-the-middle approach to BFS

– This works for queries where start and end are fixed

Additional considerations 3

• We construct a compressed representation of the
resulting paths [MNPRVV22]
– Also called path multiset representation (PMR)

All shortest walks

ALL SHORTEST WALKS

Same as ANY???

What are we looking for?

What are we looking for?

Path #1: v → n1 → n3 → v’

Path #2: v → n2 → n3 → v’

How do we do this?

Similar as before:

– Graph is an automaton

– Regular expression is an automaton

– Build the product graph

– Start searching for all shortest paths

• From the start node

• Till hitting a node tagged by an end state of the automaton

384

How do we find all shortest paths between two nodes?

All shortest paths

Let us do this for normal graphs:

– G = (V,E)

– Fix a node v

– For v' reachable from v: enumerate all shortest paths

We use BFS:

– But we will allow revisiting nodes
• When this is done by another shortest path

• We will need to record the shortest path length

• And allow a revisit when the length is the same

385

BFS – all shortest paths

386

Let’s see

Let’s see

Let’s see

Let’s see

Let’s see

Let’s see

Let’s see

Let’s see

Let’s see

Let’s see

Let’s see

Let’s see

Let’s see

Let’s see

Let’s see

Let’s see

What about these guys?

Same as before [V22]:
– Run the algorithm on the product graph

– From the start node (v,q0)

– Needs some assumptions (automaton unambiguous)

Basically

Let’s see

Let’s see

Let’s see

Let’s see

Let’s see

Let’s see

Let’s see

Let’s see

Let’s see

Let’s see

Let’s see

Let’s see

Let’s see

Let’s see

Let’s see

Let’s see

Let’s see

ALL SHORTEST WALKS

How come the complexity is the same as for ANY?
– Nothing extra is pushed onto the queue

– Sure, some additional edges are added to Visited

– But these were traversed in the standard BFS as well

Same as ANY

Yes, but you might have many more paths!

Same as ANY

Yes, but you might have many more paths!

Exponentially more compact representation of the results

See [MNPRVV22] for details

Does this work in practice?

See [MDB, FMRV23]

• Wikidata-based benchmark [WDBench]:
– 1.25B edges (60000 edge labels)/300M nodes

– 659 (non-bot) user defined queries ([MKGGB18])

– (100,000 limit – some queries have >10M results, 1min timeout)

Considerations 1

• How does CSR perform?

101

102

103

Considerations 2

• All assumptions on automaton can be lifted [DFM23]

• Same CSR/B+tree discussion applies

• For fixed (src,tgt) two-way approach has issues

Considerations 3

• The compressed representation (PMR) really shines:

Simple paths and Trails
 (bonus slides)

Simple paths

What is the problem here?

Simple paths – when to stop?

Shortest: v → n1 → v → v’

Simple: v → n1 → n2 → n3 → v’

Simple paths – the idea

The algorithm is quite stupid (as any NP-hard one):

• Iterate over all possible paths in the product graph

• If the path in the original graph is simple continue

• If the path is not simple stop extending it

Why does this terminate?

• Max path length = |V|

• So |V||V| candidates

ANY SIMPLE

Let’s see

Let’s see

Let’s see

Let’s see

Let’s see

Let’s see

Let’s see
In G

Let’s see

Let’s see

Let’s see

Let’s see

Let’s see

Let’s see

Let’s see
In G!!!

Let’s see
In G!!!

Simple path in
the product

Let’s see

Let’s see

Let’s see

Let’s see

Let’s see

Let’s see

Let’s see

Let’s see

Let’s see

Let’s see

Let’s see

Was I here before?

Let’s see

Let’s see

And this guy?

And this guy?
Needs to be

unambiguous

In general

Easily extended to:

• ANY SHORTEST SIMPLE (we already did this)

• ALL SHORTEST SIMPLE (a bit of work)

• TRAIL

Basically, all the same algorithm

Does this work in practice?

Does this work in practice?

Almost the same as "tractable" semantics!

TLDR; on path queries

Product graph construction [MW95]:
• Robust enough to support GQL requirements

– We just use a different graph exploration method

• Can be coupled with different graph storage model
– We tested for B+trees and CSR

• Compact representation of query results (when possible)
– Exponential savings for ALL SHORTEST

• Pipelined execution easy to achieve
– Pause/resume as soon as one path is found

• Works on real-world graphs
– At least on Wikidata with user defined queries

Basically not a bad way to go!

What next?

Lots of interesting problems to solve!

• We only discussed a single path query on its own
– CRPQ evaluation is still quite unexplored

• No attribute values considered in our queries
– Reasoning on those can be algorithmically challenging [LMV16]

• Aggregation over paths is highly contentious
– Easily becomes undecidable [GPC23]

• GQL is still adding new features
– Group variables introduce some intersting challenges [GQLDigest23]

Part 4: MillenniumDB

IMFD Chile

• The graph engine we built:

MillenniumDB

Key highlights of MillenniumDB

• RDF/SPARQL & Property Graphs/GQL
– Inside of the same engine

– SPARQL path queries extended with GQL-inspired features

• Classical database pipeline
– Quasi-relational

• Focus on support for public query endpoints
– MVCC-based concurrency control

– Readers always go through

– Cental update mechanism

Implementation details

• Worst-case optimal join processing
– Excelent join performance

– Storage/update heavy

• Path queries
– First engine supporting all GQL path queries

– Builds on the theoretical concept of enumeration algorithms

• B+tree storage
– Multiple permutations supporting wco-joins

– Leaf compression (Wikidata shows huge savings)

– Also support for CSR for path queries

Architecture of MillenniumDB

Triples(subject, predicate, object)

Connections(src, label, tgt, eId)
Labels(objectId, label)
Properties(objectId, key, value)

RDF

PGs

Try it yourself

https://github.com/MillenniumDB/MillenniumDB

https://github.com/MillenniumDB/MillenniumDB

Try it yourself

https://wikidata.imfd.cl

https://mdb.imfd.cl/path_finder

https://bibkg.imfd.cl/

https://telarkg.imfd.cl/

https://wikidata.imfd.cl/
https://mdb.imfd.cl/path_finder
https://bibkg.imfd.cl/
https://telarkg.imfd.cl/

References

References
[AABHRV17] Renzo Angles, Marcelo Arenas, Pablo Barceló, Aidan Hogan, Juan L.
Reutter, Domagoj Vrgoč: Foundations of Modern Query Languages for Graph
Databases. ACM Comput. Surv. 50(5): 68:1-68:40 (2017)

[B13] Pablo Barceló Baeza: Querying graph databases. PODS 2013: 175-188

[BDRV17] Jorge Baier, Dietrich Daroch, Juan L. Reutter, Domagoj Vrgoč:
Evaluating navigational RDF queries over the Web. HyperText 2017.

[MNPRVV22] Wim Martens, Matthias Niewerth, Tina Popp, Carlos Rojas, Stijn
Vansummeren, Domagoj Vrgoč: Representing Paths in Graph Database Pattern
Matching. CoRR abs/2207.13541 (2022)

[MW95] Alberto O. Mendelzon, Peter T. Wood: Finding Regular Simple Paths in
Graph Databases. SIAM J. Comput. 24(6): 1235-1258 (1995)

[V22] Domagoj Vrgoč: Evaluating regular path queries under the all-shortest
paths semantics. CoRR abs/2204.11137 (2022)

[DFM23] Claire David, Nadime Francis, Victor Marsault: Distinct Shortest Walk
Enumeration for RPQs. CoRR abs/2312.05505 (2023)

References

[FMRV23] Benjamín Farías, Wim Martens, Carlos Rojas, Domagoj Vrgoč:
Evaluating Regular Path Queries in GQL and SQL/PGQ: How Far Can The
Classical Algorithms Take Us? CoRR abs/2306.02194 (2023)

[WDBench] Renzo Angles, Carlos Buil Aranda, Aidan Hogan, Carlos Rojas,
Domagoj Vrgoč: WDBench: A Wikidata Graph Query Benchmark. ISWC 2022

[MKGGB18] Malyshev, S., Krotzsch, M., Gonzalez, L., Gonsior, J., Bielefeldt, A.:
Getting the Most Out of Wikidata: Semantic Technology Usage in Wikipedia’s
Knowledge Graph. In: ISWC 2018

[MDB] Domagoj Vrgoč, Carlos Rojas, Renzo Angles, Marcelo Arenas, Diego Arroyuelo,
Carlos Buil-Aranda, Aidan Hogan, Gonzalo Navarro, Cristian Riveros, Juan Romero:
MillenniumDB: An Open-Source Graph Database System. Data Intell. 5(3): 560-610
(2023) https://github.com/MillenniumDB

[XVG19] Chengshuo Xu, Keval Vora, Rajiv Gupta: PnP: Pruning and Prediction for
Point-To-Point Iterative Graph Analytics. APLOS 2019

References

[GPC23] Nadime Francis, Amélie Gheerbrant, Paolo Guagliardo, Leonid Libkin,
Victor Marsault, Wim Martens, Filip Murlak, Liat Peterfreund, Alexandra Rogova,
Domagoj Vrgoč: GPC: A Pattern Calculus for Property Graphs. PODS 2023

[GQLDigest23] Nadime Francis, Amélie Gheerbrant, Paolo Guagliardo, Leonid
Libkin, Victor Marsault, Wim Martens, Filip Murlak, Liat Peterfreund, Alexandra
Rogova, Domagoj Vrgoč: A Researcher's Digest of GQL. ICDT 2023

[LMV16] Leonid Libkin, Wim Martens, Domagoj Vrgoč: Querying Graphs with Data.
J. ACM 63(2) (2016)

[Multi22] Renzo Angles, Aidan Hogan, Ora Lassila, Carlos Rojas, Daniel Schwabe,
Pedro A. Szekely, Domagoj Vrgoč: Multilayer graphs: a unified data model for
graph databases. GRADES-NDA@SIGMOD 2022

[Reification] Daniel Hernández, Aidan Hogan, Markus Krötzsch: Reifying RDF: What
Works Well With Wikidata? SSWS@ISWC 2015

References
[GQL22] Alin Deutsch, Nadime Francis, Alastair Green, Keith Hare, Bei Li, Leonid
Libkin, Tobias Lindaaker, Victor Marsault, Wim Martens, Jan Michels, Filip Murlak,
Stefan Plantikow, Petra Selmer, Oskar van Rest, Hannes Voigt, Domagoj Vrgoc,
Mingxi Wu, Fred Zemke: Graph Pattern Matching in GQL and SQL/PGQ. SIGMOD

[SPARQL] Harris, S., Seaborne, A., Prud’hommeaux, E.: SPARQL 1.1 Query
Language. W3C Recommendation (2013)

[Cypher] Nadime Francis, Alastair Green, Paolo Guagliardo, Leonid Libkin, Tobias
Lindaaker, Victor Marsault, Stefan Plantikow, Mats Rydberg, Petra Selmer, Andrés
Taylor: Cypher: An Evolving Query Language for Property Graphs. SIGMOD
Conference 2018

[2RPQs] Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, Moshe Y.
Vardi: Reasoning on regular path queries. SIGMOD Rec. 32(4) (2003)

[KRRV15] Egor V. Kostylev, Juan L. Reutter, Miguel Romero, Domagoj Vrgoč:
SPARQL with Property Paths. ISWC 2015

[CM90] Mariano Consens, Alberto Mendelzon: GraphLog: a visual formalism for
real life recursion. PODS 1990

References

[QDags] Diego Arroyuelo, Gonzalo Navarro, Juan L. Reutter, Javiel
Rojas-Ledesma: Optimal Joins Using Compressed Quadtrees. ACM
TODS (2022)

[Ring] Diego Arroyuelo, Aidan Hogan, Gonzalo Navarro, Juan L.
Reutter, Javiel Rojas-Ledesma, Adrián Soto: Worst-Case Optimal
Graph Joins in Almost No Space. SIGMOD 2021

[LeapFrog] Todd L. Veldhuizen: Triejoin: A Simple, Worst-Case Optimal
Join Algorithm. ICDT 2014

[Segoufin13]Luc Segoufin: Enumerating with constant delay the
answers to a query, ICDT 2013

[REmatch] Cristian Riveros, Nicolás Van Sint Jan, Domagoj Vrgoč:
REmatch: a novel regex engine for finding all matches. VLDB 2023

References

[RDF*] Olaf Hartig: Foundations of RDF⋆ and SPARQL⋆ (An Alternative
Approach to Statement-Level Metadata in RDF). AMW 2017

[OneGraph] Ora Lassila, et. al.: The OneGraph vision: Challenges of
breaking the graph model lock-in. Semantic Web 14(1): 125-134
(2023)

[AGM08] Albert Atserias, Martin Grohe, Dániel Marx: Size Bounds and
Query Plans for Relational Joins. FOCS 2008: 739-748

[Ngo13] Hung Q. Ngo, Christopher Ré, Atri Rudra: Skew strikes back:
new developments in the theory of join algorithms. SIGMOD Rec.
42(4): 5-16 (2013)

[Ngo18] Hung Q. Ngo: Worst-Case Optimal Join Algorithms:
Techniques, Results, and Open Problems. PODS 2018: 111-124

Conclusions

Theoreticians got your back!

Two useful theoretical approaches

• Worst-case optimal (Leapfrog published in ICDT)

• Path queries (early PODS work)

An entire framework thought for practice

• Enumeration algorithms

Theoreticians can help practical work!

Try MillenniumDB

https://github.com/MillenniumDB/MillenniumDB

https://github.com/MillenniumDB/MillenniumDB

Thank you!

	Slide 1: Recent advances in Graph Data Management
	Slide 2: Outline
	Slide 3
	Slide 4
	Slide 5: An example of a “knowledge graph”?
	Slide 6: Wikidata: Wikipedia but with graph data
	Slide 7: What kinds of entities?
	Slide 8: What kinds of entities?
	Slide 9: What kinds of entities?
	Slide 10: What kinds of entities?
	Slide 11: What kinds of entities?
	Slide 12: Where is Wikidata used?
	Slide 13: Where is Wikidata used?
	Slide 14: How is this a graph?
	Slide 15: Knowledge Graph Management: Graph Databases
	Slide 16: Popular graph databases
	Slide 17: Popular graph databases
	Slide 18: Popular graph databases
	Slide 19: Graph Databases: Data Models
	Slide 20: Directed edge-labelled graph (RDF)
	Slide 21: Property graphs
	Slide 22: Property graphs vs RDF
	Slide 23: Property graphs vs RDF
	Slide 24: Property graphs vs RDF
	Slide 25: Property graphs vs RDF
	Slide 26: Property graphs vs RDF
	Slide 27: Property graphs vs RDF: the ‘‘node’’
	Slide 28: Property graphs vs RDF: the ‘‘node’’
	Slide 29: Wikidata: Wikipedia but with graph data
	Slide 30: Wikidata statements
	Slide 31: Can you represent this in RDF?
	Slide 32: Property graphs
	Slide 33: Are Property graphs enough?
	Slide 34: Are Property graphs enough?
	Slide 35: Solution: domain graphs
	Slide 36: Solution: domain graphs
	Slide 37: Solution: domain graphs
	Slide 38: Solution: domain graphs
	Slide 39: Solution: domain graphs
	Slide 40: Solution: domain graphs
	Slide 41: Implementing Domain Graphs
	Slide 42: Honourable mention: RDF*
	Slide 43: Honourable mention: RDF*
	Slide 44: Honourable mention: RDF*
	Slide 45: Honourable mention: RDF*
	Slide 46: Honourable mention: RDF*
	Slide 47: Graph databases: Why not use relational databases?
	Slide 48: Why use graphs? (flexibility)
	Slide 49: Why use graphs? (flexibility)
	Slide 50: Why use graphs? (flexibility)
	Slide 51: Why use graphs? (flexibility)
	Slide 52: Why use graphs? (flexibility)
	Slide 53: Why use graphs? (flexibility)
	Slide 54: Why use graphs? (flexibility)
	Slide 55: Why use graphs? (flexibility)
	Slide 56: The floor is yours!
	Slide 57: Querying graph databases
	Slide 58: Graph query languages
	Slide 59: Graph query languages
	Slide 60: Graph Patterns
	Slide 61: Basic graph patterns
	Slide 62: Basic graph patterns
	Slide 63: Basic graph patterns
	Slide 64: Basic graph patterns
	Slide 65: Let’s see this on Wikidata/SPARQL
	Slide 66: Basic graph patterns
	Slide 67: Basic graph patterns
	Slide 68: Basic graph patterns
	Slide 69: Basic graph patterns
	Slide 70: Let’s see this on BibKG/GQL
	Slide 71: Path Queries
	Slide 72: Regular path queries
	Slide 73: Regular path queries
	Slide 74: Regular path queries
	Slide 75: Regular path queries
	Slide 76: Regular path queries
	Slide 77: Let’s see this on Wikidata/SPARQL
	Slide 78: Regular path queries – but extended
	Slide 79: Regular path queries – but extended
	Slide 80: Regular path queries – but extended
	Slide 81: Regular path queries – but extended
	Slide 82: Regular path queries – but extended
	Slide 83: Regular path queries – but extended
	Slide 84: Regular path queries – but extended
	Slide 85: Regular path queries – but extended
	Slide 86: Let’s see this on BibKG/GQL
	Slide 87: Navigational graph patterns
	Slide 88: Navigational graph patterns
	Slide 89: Conjunctive regular path queries
	Slide 90: Conjunctive regular path queries
	Slide 91: Conjunctive regular path queries
	Slide 92: Conjunctive regular path queries
	Slide 93: Let’s see this on Wikidata/SPARQL
	Slide 95: CRPQs – but extended
	Slide 96: CRPQs – but extended
	Slide 97: Let’s see this on BibKG/GQL
	Slide 98: Graph Databases: Complex Graph Patterns
	Slide 99: Relational Algebra
	Slide 100: Complex graph patterns
	Slide 101: Complex graph patterns
	Slide 102: Complex graph patterns
	Slide 103: Complex graph patterns
	Slide 104: Complex graph patterns
	Slide 105: Complex graph patterns
	Slide 106: Complex graph patterns
	Slide 107: Graph languages summary
	Slide 108: The floor is yours!
	Slide 109: Part 1 Conclusions
	Slide 110: Part 4 spoiler: MillenniumDB (also, there will be no part 4)
	Slide 111: IMFD Chile
	Slide 112: What for?
	Slide 113: Key highlights of MillenniumDB
	Slide 114: Is theory useful? (no spoiler version)
	Slide 115: Architecture of MillenniumDB
	Slide 116: Try it yourself
	Slide 117
	Slide 118: Evaluating BGPs
	Slide 119: Evaluating BGPs
	Slide 120: How is this stored?
	Slide 121: Graphs as relations
	Slide 122: Graphs as relations
	Slide 123: Graphs as relations
	Slide 124: Graphs as relations
	Slide 125: Graphs as relations
	Slide 126: Notation for join queries
	Slide 127: Notation for join queries
	Slide 128: Notation for join queries
	Slide 129: Notation for join queries
	Slide 130: How many results can a join query have?
	Slide 131: How many results can a join query have?
	Slide 132: How many results can a join query have?
	Slide 133: How many results can a join query have?
	Slide 134: And now?
	Slide 135: And now?
	Slide 136: And now?
	Slide 137: AGM bound
	Slide 138: What would be ideal?
	Slide 139: Estimating the output size
	Slide 140: Estimating the output size
	Slide 141: Estimating the output size
	Slide 142: Estimating the output size
	Slide 143: Estimating the output size
	Slide 144: Estimating the output size
	Slide 145: Estimating the output size
	Slide 146: Estimating the output size
	Slide 147: Edge cover (for graphs)
	Slide 148: Edge cover (for graphs)
	Slide 149: Edge cover (for graphs)
	Slide 150: Edge cover (for graphs)
	Slide 151: Edge cover (for graphs)
	Slide 152: Edge cover (another perspective)
	Slide 153: Edge cover (another perspective)
	Slide 154: Edge cover (we can do one better)
	Slide 155: Fractional edge cover
	Slide 156: Fractional edge cover
	Slide 157: Fractional edge cover
	Slide 158: AGM bound – upper bound
	Slide 159: Is the AGM bound tight?
	Slide 160: Is the AGM bound tight?
	Slide 161: Is the AGM bound tight?
	Slide 162: Is the AGM bound tight?
	Slide 163: Is the AGM bound tight?
	Slide 164: Is the AGM bound tight?
	Slide 165: Is the AGM bound tight?
	Slide 166: Is the AGM bound tight?
	Slide 167: AGM bound – lower bound
	Slide 168: AGM bound – recap
	Slide 169: For our motivating query
	Slide 170: Hyperedge cover (general AGM bound)
	Slide 171: Hyperedge cover (for relations)
	Slide 172: Hyperedge cover (for relations)
	Slide 173: Hyperedge cover (for relations)
	Slide 174: Hyperedge cover (for relations)
	Slide 175: Worst-case optimal algorithms
	Slide 176: Worst-case optimal algorithms
	Slide 177: Worst-case optimal algorithms
	Slide 178: Worst-case optimal algorithms
	Slide 179: Worst-case optimal algorithms
	Slide 180: Worst-case optimal algorithms
	Slide 181: Worst-case optimal algorithms
	Slide 182: Worst-case optimal algorithms
	Slide 183: Are pairwise joins wco?
	Slide 184: Are pairwise joins wco?
	Slide 185: Are pairwise joins wco?
	Slide 186: Are pairwise joins wco?
	Slide 187: Are pairwise joins wco?
	Slide 188: Are pairwise joins wco?
	Slide 189: Are pairwise joins wco?
	Slide 190: Example of a WCO algorithm: Leapfrog Triejoin
	Slide 191: Unary joins
	Slide 192: Unary joins
	Slide 193: Unary joins
	Slide 194: Unary joins
	Slide 195: Unary joins
	Slide 196: Unary joins
	Slide 197: Unary joins
	Slide 198: Unary joins
	Slide 199: Unary joins
	Slide 200: Unary joins
	Slide 201: Unary joins
	Slide 202: Unary joins
	Slide 203: Unary joins
	Slide 204: Unary joins
	Slide 205: Unary joins
	Slide 207: Unary joins
	Slide 208: Unary joins
	Slide 209: Runtime
	Slide 210: Runtime
	Slide 211: Runtime
	Slide 212: Runtime
	Slide 213: Leapfrog Triejoin (now with relations)
	Slide 214: Evaluation of a join query
	Slide 215: Evaluation of a join query
	Slide 216: Leapfrog Triejoin
	Slide 217: Leapfrog Triejoin
	Slide 218: Leapfrog Triejoin
	Slide 219: Leapfrog Triejoin
	Slide 220: Leapfrog Triejoin
	Slide 221: Leapfrog Triejoin
	Slide 222: Leapfrog Triejoin
	Slide 223: Leapfrog Triejoin
	Slide 224: Leapfrog Triejoin
	Slide 225: Leapfrog Triejoin
	Slide 226: Leapfrog Triejoin
	Slide 227: Leapfrog Triejoin
	Slide 228: Leapfrog Triejoin
	Slide 229: Leapfrog Triejoin
	Slide 230: Leapfrog Triejoin
	Slide 231: Leapfrog Triejoin
	Slide 232: Where are the Tries?
	Slide 233: Where are the Tries?
	Slide 234: Relation as a Trie
	Slide 235: Relation as a Trie
	Slide 236: Relation as a Trie
	Slide 237: Relations are usually Tries
	Slide 238: Leapfrog in a triangle
	Slide 239: Leapfrog in a triangle
	Slide 240: Leapfrog in a triangle
	Slide 241: Leapfrog in a triangle
	Slide 242: Leapfrog in a triangle
	Slide 243: Leapfrog in a triangle
	Slide 244: Leapfrog in a triangle
	Slide 245: Leapfrog in a triangle
	Slide 246: Leapfrog in a triangle
	Slide 247: Leapfrog in a triangle
	Slide 248: Leapfrog in a triangle
	Slide 249: Leapfrog in a triangle
	Slide 250: Leapfrog in a triangle
	Slide 251: Leapfrog in a triangle
	Slide 252: Leapfrog in a triangle
	Slide 253: Leapfrog in a triangle
	Slide 254: Leapfrog in a triangle
	Slide 255: Leapfrog in a triangle
	Slide 256: Leapfrog in a triangle
	Slide 257: Leapfrog in a triangle
	Slide 258: Leapfrog in a triangle
	Slide 259: Leapfrog in a triangle
	Slide 260: Leapfrog in a triangle
	Slide 261: Leapfrog in a triangle
	Slide 262: Leapfrog in a triangle
	Slide 263: Leapfrog in a triangle
	Slide 264: Leapfrog in a triangle
	Slide 265: Leapfrog in a triangle
	Slide 266: Leapfrog in a triangle
	Slide 267: Leapfrog in a triangle
	Slide 268: Leapfrog in a triangle
	Slide 269: Leapfrog in a triangle
	Slide 270: Leapfrog in a triangle
	Slide 271: Leapfrog in a triangle
	Slide 272: Relations are usually Tries
	Slide 273: Leapfrog in a triangle
	Slide 274: Leapfrog in a triangle
	Slide 275: Leapfrog in a triangle
	Slide 276: Leapfrog in a triangle
	Slide 277: Leapfrog in a triangle
	Slide 278: How many permutations?
	Slide 279: Leapfrog is ‘’sensitive’’
	Slide 280: Leapfrog is ‘’sensitive’’
	Slide 281: Leapfrog is ‘’sensitive’’
	Slide 282: Leapfrog is ‘’sensitive’’
	Slide 283: Leapfrog is ‘’sensitive’’
	Slide 284: Leapfrog is ‘’sensitive’’
	Slide 285: Leapfrog is ‘’sensitive’’
	Slide 286: Leapfrog is ‘’sensitive’’
	Slide 287: Leapfrog is ‘’sensitive’’
	Slide 288: Leapfrog is ‘’sensitive’’
	Slide 289: Leapfrog is ‘’sensitive’’
	Slide 290: Leapfrog is ‘’sensitive’’
	Slide 291: Leapfrog is ‘’sensitive’’
	Slide 292: Leapfrog is ‘’sensitive’’
	Slide 293: Worst-case optimal joins wrapup
	Slide 294: Worst-case optimal joins wrapup
	Slide 295: Worst-case optimal joins – our take
	Slide 296: Is Leapfrog/WCO any good? (apples to apples)
	Slide 297: Is Leapfrog/WCO any good? (apples to apples)
	Slide 298
	Slide 299: What does a path query return?
	Slide 300: What does a path query return?
	Slide 301: What does a path query return?
	Slide 302: What does a path query return?
	Slide 303: What GQL proposes – you tell me
	Slide 304: What GQL proposes – you tell me
	Slide 305: What GQL proposes – you tell me
	Slide 306: What GQL proposes – you tell me
	Slide 307: What GQL proposes – you tell me
	Slide 308: This would be too much
	Slide 309: This would be too much
	Slide 310: This would be too much
	Slide 311: This would be too much
	Slide 312: But this is OK – ALL SIMPLE
	Slide 313: SIMPLE Path semantics
	Slide 314: What else?
	Slide 315: What else?
	Slide 316: What else?
	Slide 317: ALL OPTIONS
	Slide 318: ALL OPTIONS
	Slide 319: ALL OPTIONS
	Slide 320
	Slide 321
	Slide 322
	Slide 323: EXAMPLES
	Slide 324: Intermezzo A bit of Theory
	Slide 325: What should theoreticians study?
	Slide 326: What should theoreticians study?
	Slide 327: With graph databases this is even worse!
	Slide 328: Is this reasonable?
	Slide 329: Is this reasonable?
	Slide 330: Enumeration algorithms
	Slide 331: Enumeration algorithms
	Slide 332: Enumeration algorithms
	Slide 333: Enumeration algorithms
	Slide 334: Enumeration algorithms
	Slide 335: Any (shortest) walk
	Slide 336: ANY WALK
	Slide 337: Here is how
	Slide 338: Basic idea
	Slide 339: Basic idea
	Slide 340: Basic idea
	Slide 341: Basic idea
	Slide 342: ANY WALK – on-the-fly
	Slide 343: Let’s see
	Slide 344: Let’s see
	Slide 345: Let’s see
	Slide 346: Let’s see
	Slide 347: Let’s see
	Slide 348: Let’s see
	Slide 349: Let’s see
	Slide 350: Let’s see
	Slide 351: Let’s see
	Slide 352: Let’s see
	Slide 353: Let’s see
	Slide 354: Let’s see
	Slide 355: Let’s see
	Slide 356: Let’s see
	Slide 357: Let’s see
	Slide 358: Let’s see
	Slide 359: Let’s see
	Slide 360: Let’s see
	Slide 361: Let’s see
	Slide 362: Let’s see
	Slide 363: Let’s see
	Slide 364: Let’s see
	Slide 365: Let’s see
	Slide 366: Let’s see
	Slide 367: Let’s see
	Slide 368: Let’s see
	Slide 369: Let’s see
	Slide 370: Let’s see
	Slide 371: Let’s see
	Slide 372: Let’s see
	Slide 373: ANY WALK
	Slide 374: Does this work in practice?
	Slide 375: Does this work in practice?
	Slide 376: Additional considerations 1
	Slide 377: Additional considerations 1
	Slide 378: Additional considerations 2
	Slide 379: Additional considerations 3
	Slide 380: All shortest walks
	Slide 381: ALL SHORTEST WALKS
	Slide 382: What are we looking for?
	Slide 383: What are we looking for?
	Slide 384: How do we do this?
	Slide 385: All shortest paths
	Slide 386: BFS – all shortest paths
	Slide 387: Let’s see
	Slide 388: Let’s see
	Slide 389: Let’s see
	Slide 390: Let’s see
	Slide 391: Let’s see
	Slide 392: Let’s see
	Slide 393: Let’s see
	Slide 394: Let’s see
	Slide 395: Let’s see
	Slide 396: Let’s see
	Slide 397: Let’s see
	Slide 398: Let’s see
	Slide 399: Let’s see
	Slide 400: Let’s see
	Slide 401: Let’s see
	Slide 402: Let’s see
	Slide 403: What about these guys?
	Slide 404: Basically
	Slide 405: Let’s see
	Slide 406: Let’s see
	Slide 407: Let’s see
	Slide 408: Let’s see
	Slide 409: Let’s see
	Slide 410: Let’s see
	Slide 411: Let’s see
	Slide 412: Let’s see
	Slide 413: Let’s see
	Slide 414: Let’s see
	Slide 415: Let’s see
	Slide 416: Let’s see
	Slide 417: Let’s see
	Slide 418: Let’s see
	Slide 419: Let’s see
	Slide 420: Let’s see
	Slide 421: Let’s see
	Slide 422: ALL SHORTEST WALKS
	Slide 423: Same as ANY
	Slide 424: Same as ANY
	Slide 425: Does this work in practice?
	Slide 426: Considerations 1
	Slide 427: Considerations 2
	Slide 428: Considerations 3
	Slide 429: Simple paths and Trails (bonus slides)
	Slide 430: Simple paths
	Slide 431: Simple paths – when to stop?
	Slide 432: Simple paths – the idea
	Slide 434: ANY SIMPLE
	Slide 435: Let’s see
	Slide 436: Let’s see
	Slide 437: Let’s see
	Slide 438: Let’s see
	Slide 439: Let’s see
	Slide 440: Let’s see
	Slide 441: Let’s see
	Slide 442: Let’s see
	Slide 443: Let’s see
	Slide 444: Let’s see
	Slide 445: Let’s see
	Slide 446: Let’s see
	Slide 447: Let’s see
	Slide 448: Let’s see
	Slide 449: Let’s see
	Slide 450: Let’s see
	Slide 451: Let’s see
	Slide 452: Let’s see
	Slide 453: Let’s see
	Slide 454: Let’s see
	Slide 455: Let’s see
	Slide 456: Let’s see
	Slide 457: Let’s see
	Slide 458: Let’s see
	Slide 459: Let’s see
	Slide 460: Let’s see
	Slide 461: Let’s see
	Slide 462: Let’s see
	Slide 463: And this guy?
	Slide 464: And this guy?
	Slide 465: In general
	Slide 466: Does this work in practice?
	Slide 467: Does this work in practice?
	Slide 468: TLDR; on path queries
	Slide 469: What next?
	Slide 470: Part 4: MillenniumDB
	Slide 471: IMFD Chile
	Slide 472: Key highlights of MillenniumDB
	Slide 473: Implementation details
	Slide 474: Architecture of MillenniumDB
	Slide 475: Try it yourself
	Slide 476: Try it yourself
	Slide 477: References
	Slide 478: References
	Slide 479: References
	Slide 480: References
	Slide 481: References
	Slide 482: References
	Slide 483: References
	Slide 484: Conclusions
	Slide 485: Try MillenniumDB
	Slide 486

