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This is about Graph Databases

• Part 1: Modelling, data and queries

• Part 2: Worst-case optimal join algorithms

• Part 3: Path queries

• Part 4: MillenniumDB

¿How to implement a Graph Database?



Part 1: 
What are Graph Databases?



...



An example of a 
 “knowledge graph”?



Wikidata: Wikipedia but with graph data



What kinds of entities?
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What kinds of entities?



Where is Wikidata used?



Where is Wikidata used?



How is this a graph?



Knowledge Graph Management:
 Graph Databases



Popular graph databases



Popular graph databases https://db-engines.com/

https://db-engines.com/
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Graph Databases:
 Data Models



Directed edge-labelled graph (RDF)

RDF



Property graphs

Property 
Graphs



Property graphs vs RDF
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Property graphs vs RDF

Property 
Graphs

RDF

See [Reification] for details



Property graphs vs RDF: the ‘‘node’’

Property 
Graphs

RDF
Entity (IRI)

Internal ID



Property graphs vs RDF: the ‘‘node’’

Property 
Graphs

RDF
Entity (IRI)

String literal



Wikidata: Wikipedia but with graph data



Wikidata statements



Can you represent this in RDF?

RDF

See [Reification] for details



Property graphs

Property 
Graphs



Are Property graphs enough?

Property 
Graphs Literal!

Literal!

Literal!



Are Property graphs enough?

Property 
Graphs Clickable!

Why?
Political party 
of the person 
replacing her!



Solution: domain graphs

Domain graphs in a nutshell: make everything clickable

See [Multi22] for details 
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Solution: domain graphs

Domain graphs in a nutshell: make everything clickable

See [Multi22] for details 



Implementing Domain Graphs

Perhaps this is enough: one label per edge?

See [OneGraph,MDB] for details 



Honourable mention: RDF*

See [RDF*] for details 

Quotable triples



Honourable mention: RDF*

See [RDF*] for details 
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Honourable mention: RDF*

See [RDF*] for details 

Quotable triples



Honourable mention: RDF*

See [RDF*] for details 

Issue: not covering all use cases



Honourable mention: RDF*

See [RDF*] for details 

Benefits: neat syntax, being standardized

:Michelle Bachelet :position held :President of Chile .

<<:Michelle Bachelet :position held :President of Chile>> :start date "2006-03-11"^^xsd:date .

<<:Michelle Bachelet :position held :President of Chile>> :end date "2010-03-11"^^xsd:date .



Graph databases:
 Why not use relational databases?



Why use graphs? (flexibility)

RDF
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Why use graphs? (flexibility)
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Why use graphs? (flexibility)

Property 
Graphs



The floor is yours!

Anything you would like to add?



Querying graph databases



Graph query languages

• RDF/edge-labelled graphs:
– SPARQL W3C standard [SPARQL]

– Bunch of engines (Blazegraph, Jena, Virtuoso, MillenniumDB,...)

• Property graphs:
– GQL fresh ISO standard (very expressive) [GQL22, GQLDigest]

• Heavily influenced by Neo4J’s Cypher [Cypher]

– SQL/PGQ



Graph query languages

Core features of all graph query languages

• Graph patterns:
– Find a smaller graph-like pattern in a larger graph

• Path queries:
– Find how the graph nodes are connected via paths

• Navigational graph patterns:
– Put path queries into graph patterns

• Complex graph queries:
– Filters, aggregation, union, projection, selection, ...

See [AABHRV17] for details



Graph Patterns



Basic graph patterns

Academic siblings whose supervisor won the Turing Award

Idea:
Match this into the main 

graph (preserve constants)

RDF



Basic graph patterns

Academic siblings whose supervisor won the Turing Award

RDF

Semantics: Homomorphism



Basic graph patterns

Academic siblings whose supervisor won the Turing Award

RDF

Semantics: Isomorphism



Basic graph patterns

Support in RDF databases

RDF

SPARQL:

• Known as triple patterns [PAG09]

• Basically joins over the Edge(src,label,tgt) table



Let’s see this on Wikidata/SPARQL

https://wikidata.imfd.cl
Query1 Query2 Query3

https://wikidata.imfd.cl/
https://wikidata.imfd.cl/?q=PREFIX%20wdt%3A%20%3Chttp%3A%2F%2Fwww.wikidata.org%2Fprop%2Fdirect%2F%3E%0APREFIX%20wd%3A%20%3Chttp%3A%2F%2Fwww.wikidata.org%2Fentity%2F%3E%0A%0A%23%20People%20who%20studied%20at%20Stanford%20and%20won%20a%20Turing%20Award%0ASELECT%20%3Fres1%20%0AWHERE%7b%0A%20%20%3Fres1%20wdt%3AP69%20wd%3AQ41506.%0A%20%20%3Fres1%20wdt%3AP166%20wd%3AQ185667.%0A%7d%0A
https://wikidata.imfd.cl/?q=PREFIX%20wdt%3A%20%3chttp%3A%2F%2Fwww.wikidata.org%2Fprop%2Fdirect%2F%3e%0APREFIX%20wd%3A%20%3chttp%3A%2F%2Fwww.wikidata.org%2Fentity%2F%3e%0APREFIX%20rdfs%3A%20%3chttp%3A%2F%2Fwww.w3.org%2F2000%2F01%2Frdf-schema%23%3e%0A%0A%23%20Students%20of%20Manuel%20Blum%20who%20won%20a%20Turing%20Award%0ASELECT%20*%0AWHERE%7b%0A%20%20%3Fres1%20wdt%3AP166%20wd%3AQ185667.%0A%20%20%3Fres1%20wdt%3AP184%20wd%3AQ92626.%0A%20%20%3Fres1%20rdfs%3Alabel%20%3Flabel.%0A%20%20FILTER%20(langMatches(%20lang(%3Flabel)%2C%20%22ES%22%20)%20)%0A%7d%0A
https://wikidata.imfd.cl/?q=PREFIX%20wdt%3A%20%3chttp%3A%2F%2Fwww.wikidata.org%2Fprop%2Fdirect%2F%3e%0APREFIX%20wd%3A%20%3chttp%3A%2F%2Fwww.wikidata.org%2Fentity%2F%3e%0A%0A%23Students%20of%20Robert%20Floyd%20that%20studied%20at%20the%20same%20university%20and%20both%20won%20the%20Turing%20Award%0ASELECT%20%3Fres1%20%3Fres2%20%3Funiversity%0AWHERE%7b%0A%20%20%3Fres1%20wdt%3AP69%20%3Funiversity.%0A%20%20%3Fres2%20wdt%3AP69%20%3Funiversity.%0A%20%20%3Fres1%20wdt%3AP184%20wd%3AQ92641.%0A%20%20%3Fres2%20wdt%3AP184%20wd%3AQ92641.%0A%20%20%3Fres1%20wdt%3AP166%20wd%3AQ185667.%0A%20%20%3Fres2%20wdt%3AP166%20wd%3AQ185667.%0A%20%20FILTER%20(%3Fres1%20!%3D%20%3Fres2)%0A%7d%0A


Basic graph patterns

Papers written by Robert Floyd

Property

Graphs



Basic graph patterns

Co-authors of Robert Floyd

Property

Graphs



Basic graph patterns

Co-authors of Robert Floyd

Property

Graphs

Recall:
Match the pattern into the 

graph and nothing else!



Basic graph patterns

GQL:

• Similar as in SPARQL [GQLDigest, GQL]

• But now we have more things to consider
– Labels, attribute values, etc.

Property

Graphs

Support in property graph databases



Let’s see this on BibKG/GQL

https://bibkg.imfd.cl

https://bibkg.imfd.cl/#/query


Path Queries



Regular path queries

A generic RPQ

RDF

Idea:

• find pairs of nodes
• connected by a path
• whose edge labels are a word matching regex



Regular path queries

People educated at a university in the USA

RDF

Idea:

• traverse an educated at-labelled edge
• then any number of located in-labelled edges 
• until you reach the node "United States of America"



Regular path queries

People educated at a university in the USA

RDF



Regular path queries

People educated at a university in the USA

RDF



Regular path queries

A generic RPQ

RDF

SPARQL:

• Known as property paths [KRRV15]
• Based on 2-way regular path queries (RPQs) [2RPQs, MW95]
• Essentially a reachability check – no path is returned



Let’s see this on Wikidata/SPARQL

https://wikidata.imfd.cl
Query

https://wikidata.imfd.cl/
https://wikidata.imfd.cl/?q=PREFIX%20wdt%3A%20%3chttp%3A%2F%2Fwww.wikidata.org%2Fprop%2Fdirect%2F%3e%0APREFIX%20wd%3A%20%3chttp%3A%2F%2Fwww.wikidata.org%2Fentity%2F%3e%0A%0A%23Academic%20descendants%20of%20Robert%20W.%20Floyd%0ASELECT%20*%0AWHERE%7b%0A%20%3Fdescendant%20wdt%3AP184%2B%20wd%3AQ92641.%0A%7d%0ALIMIT%20100


Regular path queries – but extended

People with a finite Floyd number

Property

Graphs
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Regular path queries – but extended

People with a finite Floyd number – and a path to them

Property

Graphs



Regular path queries – but extended

People with a finite Floyd number – and a path to them

Property

Graphs



Regular path queries – but extended

People with a finite Floyd number – and a path to them

Property

Graphs

Which paths?
More on this soon!



Regular path queries – but extended

Path queries on property graphs/GQL

Property

Graphs

GQL:

• Can return paths [GQL, FMRV23]

• Supports powerfull data comparisons over paths [LMV16]

• Many features not well understood yet [GQLDigest]



Let’s see this on BibKG/GQL

https://bibkg.imfd.cl

https://bibkg.imfd.cl/#/query


Navigational graph patterns



Navigational graph patterns

Basic Graph Patterns + Regular Path Queries

RDF



Conjunctive regular path queries

Academic descendants of Robert Floyd who won the same award

RDF



Conjunctive regular path queries

Academic descendants of Robert Floyd who won the same award

RDF



Conjunctive regular path queries

Academic descendants of Robert Floyd who won the same award

RDF



Conjunctive regular path queries

Conjunctive regular path queries (CRPQs)

RDF

SPARQL:

• Allows mixing property paths into basic graph patterns
• Known as Conjunctive regular path queries (CRPQs) [CM90]
• Essentially joins with an arbitrary length reachability checks



Let’s see this on Wikidata/SPARQL

Query1 Query2

https://wikidata.imfd.cl

https://wikidata.imfd.cl/?q=PREFIX%20wdt%3A%20%3chttp%3A%2F%2Fwww.wikidata.org%2Fprop%2Fdirect%2F%3e%0APREFIX%20wd%3A%20%3chttp%3A%2F%2Fwww.wikidata.org%2Fentity%2F%3e%0A%0A%23Descendants%20of%20Robert%20Floyd%20that%20won%20the%20Turing%20award%0ASELECT%20*%0AWHERE%7b%0A%20%20%3Fperson%20wdt%3AP184%2B%20wd%3AQ92641.%0A%20%20%3Fperson%20wdt%3AP166%20wd%3AQ185667.%0A%7d
https://wikidata.imfd.cl/?q=PREFIX%20wdt%3A%20%3chttp%3A%2F%2Fwww.wikidata.org%2Fprop%2Fdirect%2F%3e%0APREFIX%20wd%3A%20%3chttp%3A%2F%2Fwww.wikidata.org%2Fentity%2F%3e%0A%0A%23Descendants%20of%20Robert%20Floyd%20that%20won%20the%20same%20award%20as%20him%0ASELECT%20*%0AWHERE%7b%0A%20%20%3Fperson%20wdt%3AP184%2B%20wd%3AQ92641.%0A%20%20%3Fperson%20wdt%3AP166%20%3Faward.%0A%20%20wd%3AQ92641%20wdt%3AP166%20%3Faward.%0A%7d
https://wikidata.imfd.cl/


CRPQs – but extended

People with a Floyd-number who published a paper about DB

Property

Graphs



CRPQs – but extended

People with a Floyd-number who published a paper about DB

Property

Graphs



Let’s see this on BibKG/GQL

https://bibkg.imfd.cl

https://bibkg.imfd.cl/#/query


Graph Databases:
 Complex Graph Patterns



At the core of millions of databases 
we take for granted every day

Relational Algebra



Complex graph patterns

Graph Patterns + Relational Algebra
+ Regular Path Queries 



Academic siblings whose supervisor won the Turing Award

Complex graph patterns



Academic siblings whose supervisor won the Turing Award

Complex graph patterns



Complex graph patterns

People who were born or studied in the US?



Complex graph patterns

People who were born or studied in the US?



Complex graph patterns

People who were born or studied in the US?



Complex graph patterns

• Graph patterns

• Path queries

• Navigational graph patterns

• Relational operations

• Aggregation

• ...



Graph languages summary

• RDF/edge-labelled graphs:
– SPARQL W3C standard

– Bunch of engines (Blazegraph, Jena, Virtuoso, MillenniumDB,...)

• Property graphs:
– GQL ISO standard is still piping hot

– Very expressive, still being implemented and studied



The floor is yours!

What features are crucial in a graph query language?



Part 1 Conclusions

• Graph databases a hot topic!

• Two models:
– Directed edge-labelled graphs/RDF

– Property graphs

• Query features:
– Basic graph patterns

– Path queries

– Relational features

• Need for efficient methods for evaluating queries

Let's learn some efficient methods!



Part 4 spoiler: MillenniumDB
(also, there will be no part 4)



IMFD Chile

• Millennium Science Initiative Chile
– Interdisciplinary research institue (CS/Social Sciences)

– Focus on big scale projects

– One of those: "build a graph database system" 

• Why us?
– DB expertise: M. Arenas, J. Reutter, C. Riveros, J. Pérez

– Semantic Web crowd: A. Hogan, C. Gutierrez, R. Angles

– Algorithms/compression: G. Navarro, D. Arroyuelo

MillenniumDB



What for?

• Open source:
– Build a sandbox for testing research algorithms
– Test if our research claims check out
– Support Wikidata
– Also, this way we can check if theory is worth anything!

• People involved:
– Carlos Rojas (chief engineer)
– Vicente Calisto, Gustavo Toro, Benjamín Farías
– T. Heuer, K. Bosonney, J. Romero, ...
– Myself (chief complainer)

2019 ...



Key highlights of MillenniumDB

• RDF/SPARQL & Property Graphs/GQL
– Inside of the same engine

– SPARQL path queries extended with GQL-inspired features

• Classical database pipeline
– Quasi-relational

• Focus on support for public query endpoints
– MVCC-based concurrency control

– Readers always go through

– Cental update mechanism



Is theory useful? (no spoiler version)

• Worst-case optimal join processing
– Graph data usually requires queries where this is useful

– So will it pan out?

– Elephant in the room: indices, updates, concurrency

• Path queries
– An old idea from DB theory that everyone claims they use

• Enumeration algorithms
– Recent theoretical concept of splitting query evaluation into two

– Preprocessing with a single pass over the data

– Enumerate the results one by one (volcano-style)



Architecture of MillenniumDB

Triples(subject, predicate, object)

Connections(src, label, tgt, eId)
Labels(objectId, label)
Properties(objectId, key, value)

RDF

PGs



Try it yourself

https://github.com/MillenniumDB/MillenniumDB

https://github.com/MillenniumDB/MillenniumDB


Part 2: 
Evaluating Graph Patterns



Evaluating BGPs

Students and supervisors who both won the same award

RDF



Evaluating BGPs

Students and supervisors who both won the same award

RDF

SELECT *
WHERE {
  ?supervisor :advisor ?student .
  ?supervisor :received ?award .
 ?student :received ?award .
}



How is this stored?

Students and supervisors who both won the same award

RDF

SELECT *
WHERE {
  ?supervisor :advisor ?student .
  ?supervisor :received ?award .
 ?student :received ?award .
}

Triples(subject, predicate, object)

• Graph stored as a relation

• Graph pattern is a join of this relation

• And usually we do this join many times



Graphs as relations



Graphs as relations
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Graphs as relations



Graphs as relations



Notation for join queries



Notation for join queries



Notation for join queries



Notation for join queries

• Basically, joins are important

• Graph patterns can be viewed as joins of binary relations



How many results can a join query have?

Over graphs with a fixed budget n = 4 for each edge

• This just means 

• Turns out this is a very subtle question!



How many results can a join query have?

Over graphs with a fixed budget n = 4 for each edge
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How many results can a join query have?

Over graphs with a fixed budget n = 4 for each edge



And now?

Over graphs with a fixed budget n = 4 for each edge



And now?

Over graphs with a fixed budget n = 4 for each edge



And now?

Over graphs with a fixed budget n = 4 for each edge

• In this instance we got 8!

• Interestingly, this is the maximum.

Why?



AGM bound

See [AGM08] for details ???



What would be ideal?

• Best possible algorithm for a query      :
– per query result

– So runtime would be                     on any instance   

– This is the holy grail of databases!
• So it probably does not exist

But let us try to see how good this would be
(i.e. let’s see how many results there are) 



Estimating the output size
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Estimating the output size



Estimating the output size



Estimating the output size



Estimating the output size



Estimating the output size



Estimating the output size



Edge cover (for graphs)



Edge cover (for graphs) Graph G
Nodes: ?x, ?y, ?z

Edges: R, S, T
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Edges: R, S, T



Edge cover (for graphs)
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Edge cover (another perspective)



Edge cover (another perspective)



Edge cover (we can do one better)

integers



Fractional edge cover



Fractional edge cover



Fractional edge cover

Intuitively: the fraction allows only some tuples

of a relation to participate in the result



AGM bound – upper bound

See [AGM08] for details



Is the AGM bound tight?
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Is the AGM bound tight?



Is the AGM bound tight?



Is the AGM bound tight?

We can find the best fractional edge cover 

over all such instances!



Is the AGM bound tight?



AGM bound – lower bound

See [AGM08] for details



AGM bound – recap

See [AGM08] for details



For our motivating query



Hyperedge cover (general AGM bound)



Hyperedge cover (for relations)



Hyperedge cover (for relations)



Hyperedge cover (for relations)



Hyperedge cover (for relations)



Worst-case optimal algorithms

• Best possible algorithm for a query      :
– per query results

– So runtime would be                     on any instance   

– This is the holy grail of databases!
• So it probably does not exist

• Something more realistic:
– Join query: 

– I give you any instance where 

– The algorithm runs the best it can on any such instance

What does the ‘’best it can’’ mean?



Worst-case optimal algorithms

See [AGM08] for details



Worst-case optimal algorithms

See [AGM08] for details

You cannot be worse than this!



Worst-case optimal algorithms

See [AGM08] for details

You cannot be worse than this!

It can actually be this bad!



Worst-case optimal algorithms

See [Ngo13] for details



Worst-case optimal algorithms

See [Ngo13] for details

Up to a logarithmic factor!



Worst-case optimal algorithms

See [Ngo13] for details



Worst-case optimal algorithms

See [Ngo13] for details



Are pairwise joins wco?

Maybe we can find a good ordering?

(AGM bound)



Are pairwise joins wco?

Observations:
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Are pairwise joins wco?

Observations:



Are pairwise joins wco?

Observations:



Are pairwise joins wco?

Observations:



Are pairwise joins wco?

Conclusion:

Pairwise joins are not worst-case optimal!



Example of a WCO algorithm:
 Leapfrog Triejoin



Unary joins

Relations stored in increasing order



Unary joins

Evaluate              aaaaaaaaaaaaaaaaa
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Evaluate              aaaaaaaaaaaaaaaaa



Unary joins

Evaluate              aaaaaaaaaaaaaaaaa



Unary joins

Evaluate              aaaaaaaaaaaaaaaaa



Unary joins

Relations stored in increasing order



Unary joins



Runtime



Runtime

Cycle through the iters

Max number of seeks

Cost of a seek



Runtime

How many steps does the algorithm take to detect there are 0 results?



Runtime

How many steps does the algorithm take to detect there are 0 results?



Leapfrog Triejoin
(now with relations)



Evaluation of a join query

Different evaluation philosophy



Evaluation of a join query

Different evaluation philosophy



Leapfrog Triejoin

Global Variable Ordering (GAO)



Leapfrog Triejoin

Global Variable Ordering (GAO)



Leapfrog Triejoin

Global Variable Ordering (GAO)



Leapfrog Triejoin

Global Variable Ordering (GAO)



Leapfrog Triejoin

Partially instantiating the join w.r.t. GAO
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Partially instantiating the join w.r.t. GAO



Leapfrog Triejoin

Partially instantiating the join w.r.t. GAO



Leapfrog Triejoin

Partially instantiating the join w.r.t. GAO



Leapfrog Triejoin

Partially instantiating the join w.r.t. GAO

Partially instantiating the query w.r.t. GAO



Leapfrog Triejoin

Partially instantiating the join w.r.t. GAO

Partially instantiating the query w.r.t. GAO



Leapfrog Triejoin

Partially instantiating the join w.r.t. GAO

Partially instantiating the query w.r.t. GAO



Leapfrog Triejoin



Leapfrog Triejoin



Leapfrog Triejoin

A bunch of nested fors is optimal?



Leapfrog Triejoin

A bunch of nested fors is optimal?

AGM bound is tight:
There is a case where you

saturate all these intersections!



Leapfrog Triejoin

A bunch of nested fors is optimal?

AGM bound is tight:
There is a case where you

saturate all these intersections!

It’s worst-case optimal!



Where are the Tries?



Where are the Tries?



Relation as a Trie

(Tikz image of the Trie by Cristian Riveros, example from [Leapfrog])



Relation as a Trie

(Tikz image of the Trie by Cristian Riveros, example from [Leapfrog])



Relation as a Trie

(Tikz image of the Trie by Cristian Riveros, example from [Leapfrog])



Relations are usually Tries

Most common way to store a relation?

B+ tree

Supports search of a prefix of T[x,y,z] in O(log|T|) 
Therefore seek can be done in the neccessary time



Leapfrog in a triangle



Leapfrog in a triangle



Leapfrog in a triangle



Leapfrog in a triangle



Leapfrog in a triangle
Unary leapfrog



Leapfrog in a triangle



Leapfrog in a triangle



Leapfrog in a triangle



Leapfrog in a triangle



Leapfrog in a triangle
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Leapfrog in a triangle
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Leapfrog in a triangle



Leapfrog in a triangle



Leapfrog in a triangle



Leapfrog in a triangle



Leapfrog in a triangle



Leapfrog in a triangle



Leapfrog in a triangle



Leapfrog in a triangle



Leapfrog in a triangle



Leapfrog in a triangle



Leapfrog in a triangle



Leapfrog in a triangle



Leapfrog in a triangle



Leapfrog in a triangle



Leapfrog in a triangle



Leapfrog in a triangle



Leapfrog in a triangle

Done!



Relations are usually Tries

Most common way to store a relation?

B+ tree

So we can do Leapfrog on relations
(Is it really this easy?)



Leapfrog in a triangle



Leapfrog in a triangle



Leapfrog in a triangle



Leapfrog in a triangle

Cannot do efficient intersection!

(We need a Trie starting with ?z)



Leapfrog in a triangle

• To support any GAO:
– We need all the permutations of the attributes

– Table with n attributes = n! permutations



How many permutations?

• This can get expensive
– Need many permutations

– Many many many permutations

– Basically all column orderings of your tables

– 3! = 6 for RDF

– 4! + 2! + 3! = too many for PGs

Triples(subject, predicate, object)

Connections(src, label, tgt, eId)
Labels(objectId, label)
Properties(objectId, key, value)

RDF

PGs



Leapfrog is ‘’sensitive’’
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Leapfrog is ‘’sensitive’’



Leapfrog is ‘’sensitive’’



Leapfrog is ‘’sensitive’’



Leapfrog is ‘’sensitive’’

Optimal!



Leapfrog is ‘’sensitive’’

Hmm... are you not 
supposed to be 

optimal? 



Leapfrog is ‘’sensitive’’

Hmm... are you not 
supposed to be 

optimal? 

I’m optimal in the worst case!
(and this is not the worst case)



Worst-case optimal joins wrapup

See [MDB] for details

• Storage can be expensive
– 1.8TB for full Wikidata (4 permutations, B+ trees)

– Simple compression of B+trees ~ 900GB

– Compressed representation possible ([Ring, QDags])
• These simulate all the permutations

• Cashing reusable things migh be a bad idea
– For Truthy this worked great

– But in full WikiData it gets to 10GB

• Elephant in the room (no, it’s not Postgres):
– 4 permutations or more need to be updated/versioned

– Still works decent in our setup, but is expensive



Worst-case optimal joins wrapup

See [MDB] for details

• Guarantee to run in the best time in the worst case!
– Basically never more steps then the number of query results

– Outperform classical pairwise join plans on „worst” instances

• Benefits of LeapfrogTriejoin
– Works with B+trees

– Works with MVCC/SI and updates out of the box



Worst-case optimal joins – our take

• RDF:
– SPO, POS, OSP, PSO

• PGs:
– eId is key – stays last, so same orders as RDF

• Allows answering all queries where edge label is known!
– These are usually the ones you would be interested in

– Since search is not done in the void

• For missing permutations:
– Cost-based implementations (Sellinger and Greedy)



Is Leapfrog/WCO any good? (apples to apples)

• Now we can test different algorithms in the same engine
– Important: data on disk buffered to main memory

• Wikidata-based benchmark:
– 1.25B edges

– 300M nodes

– 60000 edge labels

– Queries from the public log (so real ones)

• Only non-bot queries

• Eliminating duplicates (check [WDBENCH])

• 436 complex joins

– Start with a cold engine, data loaded as needed



Is Leapfrog/WCO any good? (apples to apples)



Part 3: 
Evaluation of Path Queries



What does a path query return?

All nodes:

• Reachable from start in our graph

• Via a path

• Whose edge label matches a*b 



All nodes:

• Reachable from start in our graph

• Via a path

• Whose edge label matches a*b 

What if I also want the 
path?

What does a path query return?



I also want the path:

• Path #1:  start→n1→n3→end

• Path #2:  start→n1→n2→n3→end

• Path #3:  start→n2→n3→end

What does a path query return?



I also want the path:

• Path #1:  start→n1→n3→end

• Path #2:  start→n1→n2→n3→end

• Path #3:  start→n2→n3→end

Which one?

What does a path query return?



What GQL proposes – you tell me

I also want the path:

• Path #1:  start→n1→n3→end

• Path #2:  start→n1→n2→n3→end

• Path #3:  start→n2→n3→end



What GQL proposes – you tell me

I also want the path:

• Path #1:  start→n1→n3→end

• Path #2:  start→n1→n2→n3→end

• Path #3:  start→n2→n3→end

Why WALK?
Mathematicians call a path a walk



What GQL proposes – you tell me

I also want the path:

• Path #1:  start→n1→n3→end

• Path #2:  start→n1→n2→n3→end

• Path #3:  start→n2→n3→end

For each ?reachable one path
(nondeterministic)



What GQL proposes – you tell me

I also want the path:

• Path #1:  start→n1→n3→end

• Path #2:  start→n1→n2→n3→end

• Path #3:  start→n2→n3→end

For each ?reachable one shortest 
path (nondeterministic)



What GQL proposes – you tell me

I also want the path:

• Path #1:  start→n1→n3→end

• Path #2:  start→n1→n2→n3→end

• Path #3:  start→n2→n3→end

For each ?reachable 
all shortest paths



This would be too much



This would be too much

For each ?reachable 
all paths



This would be too much

A is reachable from start by:

• start→A

• start→A→B→start→A

• start→A→B→start→A→B→start→A

• ...



This would be too much

A is reachable from start by:

• start→A

• start→A→B→start→A

• start→A→B→start→A→B→start→A

• ...

Infinite 
(NOT GOOD FOR YOUR PC)



But this is OK – ALL SIMPLE

No node is repeated 
in the path



SIMPLE Path semantics

A is reachable from start by:

• start→A

• start→A→B→start→A

(No infinite looping)



What else?

No edge is repeated 
in the path;

(We need property graphs)



What else?

Good trails:

• start→n1

• start→n1→start

• start→n1→start→n2

(No infinite looping – limited by the number of edges)



What else?

Good trails:

• start→n1

• start→n1→start

• start→n1→start→n2

(No infinite looping – limited by the number of edges)

Not TRAIL



ALL OPTIONS

...



ALL OPTIONS

...

Let's solve all these!!!



ALL OPTIONS

...

PROVISO:

Starting node is fixed!



EXAMPLES



EXAMPLES



EXAMPLES



EXAMPLES

• Let us try out a few examples

https://mdb.imfd.cl/path_finder/

https://www.metro.cl/el-viaje/plano-de-red

https://mdb.imfd.cl/path_finder/
https://www.metro.cl/el-viaje/plano-de-red


Intermezzo

A bit of Theory



What should theoreticians study?

• Usual approach: decision problems



What should theoreticians study?

• Does this make sense?

– Join-eval is PTIME, but join + project NP-hard

• Algorithm for finding solutions:

– Try all tuples one at a time



With graph databases this is even worse!

• For any reasonable notion of path query in PTIME

• How do we generate the results?

– Iterate over all possible paths from src to tgt



Is this reasonable?

Sometimes there is an exponential number of those!



Is this reasonable?

Or infinite!

This is actually a semantic issue!

• start→A→end

• start→A→end→start→A→end

• start→A→end→start→A→end→start→A→end

• ...



Enumeration algorithms

What do I do when the output is exponential?

Measure the complexity in terms of |Input| + |Output|

Desiderata:

• Single pass over the data

• Enumerate results one by one without repetitions

• Ideally as soon as they are detected (pipelining)



Enumeration algorithms

What do I do when the output is exponential?

Enumeration algorithms:

• A pre-processing phase that „encodes” the outputs

• Enumeration phase that produces the results

Ideal case – constant delay:

• Single pass over the data O(|G|)

• Produce each output in time O(1)

• So complexity is |Input|+|Output|



Enumeration algorithms

What do I do when the output is exponential?

Can we produce a path in O(1)?

• n1→n2→n3→n4→n5→... ... ... →nk

Graph/path case – output-linear delay:

• Single pass over the data O(|G|)

• Produce each output path p in time O(|p|)
– We take O(1) for each element of the path we output

– Basically the time needed to write down the path

• So complexity is |Input|+|Output|



Enumeration algorithms

These have been studied by the PODS community a lot!

Constant delay notion over relational

• Output is a single element per variable

• Usually O(c·|Input|) complexity with large c [Segoufin13]

Output-linear delay needed in general

• Used for RegEx analysis [REmatch]

• And very natural for path outputs



Enumeration algorithms

What do I want for graphs/paths?

Desiderata:

• Single pass over the data O(|q|·|Input|)

– That can be done incrementally

– Finding the first result pauses the algorithm

– So the complexity will usually be proportional to path size

• Enumerate results one by one without repetitions
– As soon as they are detected (pipelining)

– With output-linear delay (even in the pipelined setting)

Let me show you how this was solved in ‘87



Any (shortest) walk



ANY WALK

How?



Here is how

The product construction [MW95]:
– Graph is an automaton
– Regular expression is an automaton
– Do the cross product (on-the-fly to be "efficient")
– Do reachability check from start states to end states

Which algorithms can do this?
– BFS
– DFS
– A*
– IDDFS
– ...

See [MW95,BDRV17,B13,FMRV23] for details



Basic idea



Basic idea



Basic idea



Basic idea



ANY WALK – on-the-fly



Let’s see



Let’s see
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Let’s see



ANY WALK

BFS



Does this work in practice?

See [MDB, FMRV23]

• MillenniumDB implements it:
– Algorithm works off the bat with B+trees

– Basically EDGE(src, type, tgt, edgeId) relation

– Classical iterator interface
• Results returned as soon as available

• Algorithm pauses when a result is found

• Try it for yourself:

https://mdb.imfd.cl/path_finder/

https://mdb.imfd.cl/path_finder/


Does this work in practice?

See [MDB, FMRV23]

• Wikidata-based benchmark [WDBench]:
– 1.25B edges (60000 edge labels)/300M nodes

– 659 (non-bot) user defined queries ([MKGGB18])

– (100,000 limit – some queries have >10M results, 1min timeout)



Additional considerations 1

• CSR-based storage gives better performance [FMRV23]
– CSRs can also be built on-the-fly as needed by the query



Additional considerations 1

• CSR-based storage gives better performance [FMRV23]
– CSRs can also be built on-the-fly as needed by the query



Additional considerations 2

• Significant speedups possible when both source and 
target are known [XVG19]
– Basically meet-in-the-middle approach to BFS

– This works for queries where start and end are fixed



Additional considerations 3

• We construct a compressed representation of the 
resulting paths [MNPRVV22]
– Also called path multiset representation (PMR)



All shortest walks



ALL SHORTEST WALKS

Same as ANY???



What are we looking for?



What are we looking for?

Path #1: v → n1 → n3 → v’

Path #2: v → n2 → n3 → v’



How do we do this?

Similar as before:

– Graph is an automaton

– Regular expression is an automaton

– Build the product graph

– Start searching for all shortest paths 

• From the start node

• Till hitting a node tagged by an end state of the automaton

384

How do we find all shortest paths between two nodes?



All shortest paths

Let us do this for normal graphs:

– G = (V,E)

– Fix a node v

– For v' reachable from v: enumerate all shortest paths

We use BFS:

– But we will allow revisiting nodes
• When this is done by another shortest path

• We will need to record the shortest path length

• And allow a revisit when the length is the same

385



BFS – all shortest paths

386



Let’s see
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What about these guys?

Same as before [V22]:
– Run the algorithm on the product graph

– From the start node (v,q0)

– Needs some assumptions (automaton unambiguous)



Basically



Let’s see
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Let’s see



ALL SHORTEST WALKS

How come the complexity is the same as for ANY?
– Nothing extra is pushed onto the queue

– Sure, some additional edges are added to Visited

– But these were traversed in the standard BFS as well



Same as ANY

Yes, but you might have many more paths!



Same as ANY

Yes, but you might have many more paths!

Exponentially more compact representation of the results

See [MNPRVV22] for details



Does this work in practice?

See [MDB, FMRV23]

• Wikidata-based benchmark [WDBench]:
– 1.25B edges (60000 edge labels)/300M nodes

– 659 (non-bot) user defined queries ([MKGGB18])

– (100,000 limit – some queries have >10M results, 1min timeout)



Considerations 1

• How does CSR perform?

101

102

103



Considerations 2

• All assumptions on automaton can be lifted [DFM23]

• Same CSR/B+tree discussion applies

• For fixed (src,tgt) two-way approach has issues



Considerations 3

• The compressed representation (PMR) really shines:



Simple paths and Trails
 (bonus slides)



Simple paths

What is the problem here?



Simple paths – when to stop?

Shortest: v → n1 → v → v’

Simple:    v → n1 → n2 → n3 → v’



Simple paths – the idea

The algorithm is quite stupid (as any NP-hard one):

• Iterate over all possible paths in the product graph

• If the path in the original graph is simple continue

• If the path is not simple stop extending it

Why does this terminate?

• Max path length = |V|

• So |V||V| candidates



ANY SIMPLE



Let’s see
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In G
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Let’s see
In G!!!



Let’s see
In G!!!

Simple path in 
the product



Let’s see
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Let’s see



Let’s see



Let’s see



Let’s see

Was I here before?



Let’s see



Let’s see



And this guy?



And this guy?
Needs to be

unambiguous



In general

Easily extended to:

• ANY SHORTEST SIMPLE (we already did this)

• ALL SHORTEST SIMPLE (a bit of work)

• TRAIL

Basically, all the same algorithm



Does this work in practice?



Does this work in practice?

Almost the same as "tractable" semantics! 



TLDR; on path queries

Product graph construction [MW95]:
• Robust enough to support GQL requirements

– We just use a different graph exploration method

• Can be coupled with different graph storage model
– We tested for B+trees and CSR

• Compact representation of query results (when possible)
– Exponential savings for ALL SHORTEST

• Pipelined execution easy to achieve
– Pause/resume as soon as one path is found

• Works on real-world graphs
– At least on Wikidata with user defined queries

Basically not a bad way to go!



What next?

Lots of interesting problems to solve!

• We only discussed a single path query on its own
– CRPQ evaluation is still quite unexplored

• No attribute values considered in our queries
– Reasoning on those can be algorithmically challenging [LMV16]

• Aggregation over paths is highly contentious
– Easily becomes undecidable [GPC23]

• GQL is still adding new features
– Group variables introduce some intersting challenges [GQLDigest23]



Part 4: MillenniumDB



IMFD Chile

• The graph engine we built:

MillenniumDB



Key highlights of MillenniumDB

• RDF/SPARQL & Property Graphs/GQL
– Inside of the same engine

– SPARQL path queries extended with GQL-inspired features

• Classical database pipeline
– Quasi-relational

• Focus on support for public query endpoints
– MVCC-based concurrency control

– Readers always go through

– Cental update mechanism



Implementation details

• Worst-case optimal join processing
– Excelent join performance

– Storage/update heavy

• Path queries
– First engine supporting all GQL path queries

– Builds on the theoretical concept of enumeration algorithms

• B+tree storage
– Multiple permutations supporting wco-joins

– Leaf compression (Wikidata shows huge savings)

– Also support for CSR for path queries



Architecture of MillenniumDB

Triples(subject, predicate, object)

Connections(src, label, tgt, eId)
Labels(objectId, label)
Properties(objectId, key, value)

RDF

PGs



Try it yourself

https://github.com/MillenniumDB/MillenniumDB

https://github.com/MillenniumDB/MillenniumDB


Try it yourself

https://wikidata.imfd.cl

https://mdb.imfd.cl/path_finder

https://bibkg.imfd.cl/

https://telarkg.imfd.cl/

https://wikidata.imfd.cl/
https://mdb.imfd.cl/path_finder
https://bibkg.imfd.cl/
https://telarkg.imfd.cl/
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Conclusions

Theoreticians got your back!

Two useful theoretical approaches

• Worst-case optimal (Leapfrog published in ICDT)

• Path queries (early PODS work)

An entire framework thought for practice

• Enumeration algorithms

Theoreticians can help practical work!



Try MillenniumDB

https://github.com/MillenniumDB/MillenniumDB

https://github.com/MillenniumDB/MillenniumDB


Thank you!
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